Skip to main content

Symbolic Graph Embedding Using Frequent Pattern Mining

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11828))

Abstract

Relational data mining is becoming ubiquitous in many fields of study. It offers insights into behaviour of complex, real-world systems which cannot be modeled directly using propositional learning. We propose Symbolic Graph Embedding (SGE), an algorithm aimed to learn symbolic node representations. Built on the ideas from the field of inductive logic programming, SGE first samples a given node’s neighborhood and interprets it as a transaction database, which is used for frequent pattern mining to identify logical conjuncts of items that co-occur frequently in a given context. Such patterns are in this work used as features to represent individual nodes, yielding interpretable, symbolic node embeddings. The proposed SGE approach on a venue classification task outperforms shallow node embedding methods such as DeepWalk, and performs similarly to metapath2vec, a black-box representation learner that can exploit node and edge types in a given graph. The proposed SGE approach performs especially well when small amounts of data are used for learning, scales to graphs with millions of nodes and edges, and can be run on an of-the-shelf laptop .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that this method takes as input random walk samples for all nodes.

  2. 2.

    In practice, however, larger dimensions are needed to represent the set of nodes well by using symbolic representations.

  3. 3.

    Accessible at https://ericdongyx.github.io/metapath2vec/m2v.html.

  4. 4.

    https://github.com/SkBlaz/Py3plex.

  5. 5.

    The code repository is available at https://github.com/SkBlaz/SGE.

References

  1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Borgelt, C.: Efficient implementations of apriori and eclat. In: FIMI 2003: Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (2003)

    Google Scholar 

  4. Borgelt, C.: An implementation of the FP-growth algorithm. In: Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, pp. 1–5. ACM (2005)

    Google Scholar 

  5. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global RDF vector space embeddings. ISWC 2017. LNCS, vol. 10587, pp. 190–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_12

    Chapter  Google Scholar 

  6. Dash, T., Srinivasan, A., Vig, L., Orhobor, O.I., King, R.D.: Large-scale assessment of deep relational machines. In: Riguzzi, F., Bellodi, E., Zese, R. (eds.) ILP 2018. LNCS (LNAI), vol. 11105, pp. 22–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99960-9_2

    Chapter  Google Scholar 

  7. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144. ACM (2017)

    Google Scholar 

  8. França, M.V., Zaverucha, G., Garcez, A.S.D.: Fast relational learning using bottom clause propositionalization with artificial neural networks. Mach. Learn. 94(1), 81–104 (2014)

    Article  MathSciNet  Google Scholar 

  9. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  10. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy), January 2008

    Google Scholar 

  11. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov. 15(1), 55–86 (2007)

    Article  MathSciNet  Google Scholar 

  12. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5_2

    Chapter  Google Scholar 

  13. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001). http://www.scipy.org/

  14. Kralj, J., Robnik-Šikonja, M., Lavrač, N.: HINMINE: heterogeneous information network mining with information retrieval heuristics. J. Intell. Inf. Syst. 50(1), 29–61 (2018)

    Article  Google Scholar 

  15. Lam, S.K., Pitrou, A., Seibert, S.: Numba: A LLVM-based python JIT compiler. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, p. 7. ACM (2015)

    Google Scholar 

  16. Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood, New York (1994)

    MATH  Google Scholar 

  17. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 631–636. ACM (2006)

    Google Scholar 

  18. Maiya, A.S., Berger-Wolf, T.Y.: Sampling community structure. In: Proceedings of the 19th International Conference on World Wide Web, pp. 701–710. ACM (2010)

    Google Scholar 

  19. McInnes, L., Healy, J., Saul, N., Grossberger, L.: UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3(29), 861 (2018)

    Article  Google Scholar 

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Perego, R., Orlando, S., Palmerini, P.: Enhancing the Apriori algorithm for frequent set counting. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 71–82. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44801-2_8

    Chapter  Google Scholar 

  22. Perovšek, M., Vavpetič, A., Kranjc, J., Cestnik, B., Lavrač, N.: Wordification: propositionalization by unfolding relational data into bags of words. Expert Syst. Appl. 42(17–18), 6442–6456 (2015)

    Article  Google Scholar 

  23. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  24. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30

    Chapter  Google Scholar 

  25. Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2018)

    Article  Google Scholar 

  26. Škrlj, B., Kralj, J., Lavrač, N.: Py3plex: a library for scalable multilayer network analysis and visualization. In: Aiello, L.M., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L.M. (eds.) COMPLEX NETWORKS 2018. SCI, vol. 812, pp. 757–768. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05411-3_60

    Chapter  Google Scholar 

  27. Srinivasan, A.: The Aleph Manual (2001)

    Google Scholar 

  28. Tang, J., Qu, M., Mei, Q.: Pte: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1165–1174. ACM (2015)

    Google Scholar 

  29. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  30. Walt, S.V.D., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

    Article  Google Scholar 

  31. Zhang, Y., Jin, R., Zhou, Z.H.: Understanding bag-of-words model: a statistical framework. Int. J. Mach. Learn. Cybern. 1(1–4), 43–52 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kralj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Škrlj, B., Lavrač, N., Kralj, J. (2019). Symbolic Graph Embedding Using Frequent Pattern Mining. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds) Discovery Science. DS 2019. Lecture Notes in Computer Science(), vol 11828. Springer, Cham. https://doi.org/10.1007/978-3-030-33778-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33778-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33777-3

  • Online ISBN: 978-3-030-33778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics