Skip to main content

Embedding to Reference t-SNE Space Addresses Batch Effects in Single-Cell Classification

  • Conference paper
  • First Online:
Discovery Science (DS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11828))

Included in the following conference series:

Abstract

Dimensionality reduction techniques, such as t-SNE, can construct informative visualizations of high-dimensional data. When working with multiple data sets, a straightforward application of these methods often fails; instead of revealing underlying classes, the resulting visualizations expose data set-specific clusters. To circumvent these batch effects, we propose an embedding procedure that uses a t-SNE visualization constructed on a reference data set as a scaffold for embedding new data points. Each data instance in the secondary data is embedded independently, and does not change the reference embedding. This prevents any interactions between instances in the secondary data and implicitly mitigates batch effects. We demonstrate the utility of this approach by analyzing six recently published single-cell gene expression data sets with up to tens of thousands of cells and thousands of genes. The batch effects in our studies are particularly strong as the data comes from different institutions and was obtained using different experimental protocols. The visualizations constructed by our proposed approach are cleared of batch effects, and the cells from secondary data sets correctly co-cluster with cells of the same type from the primary data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/biolab/tsne-embedding.

References

  1. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  2. McInnes, L., Healy, L., Melville, L.: UMAP: uniform manifold approximation and projection for dimension reduction. ArXiv e-prints, February 2018

    Article  Google Scholar 

  3. Wattenberg, M., Viégas, F., Johnson, I.: How to use t-SNE effectively. Distill 1(10), e2 (2016)

    Article  Google Scholar 

  4. Becht, E., et al.: Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37(1), 38 (2019)

    Article  Google Scholar 

  5. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: an unsupervised approach. In: 2011 International Conference on Computer Vision, pp. 999–1006. IEEE (2011)

    Google Scholar 

  6. Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning under covariate shift. J. Mach. Learn. Res. 10(Sep), 2137–2155 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. The MIT Press, Cambridge (2009)

    Google Scholar 

  8. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., Satija, R.: Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36(5), 411 (2018)

    Article  Google Scholar 

  9. Haghverdi, L., Lun, A.T.L., Morgan, M.D., Marioni, J.C.: Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36(5), 421 (2018)

    Article  Google Scholar 

  10. Stuart, T., et al.: Comprehensive Integration of Single-Cell Data. Cell 177(7), 1888–1902 (2019)

    Article  Google Scholar 

  11. Hrvatin, S., et al.: Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21(1), 120 (2018)

    Article  Google Scholar 

  12. Chen, R., Xiaoji, W., Jiang, L., Zhang, Y.: Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep. 18(13), 3227–3241 (2017)

    Article  Google Scholar 

  13. Baron, M., et al.: A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell Syst. 3(4), 346–360 (2016)

    Article  Google Scholar 

  14. Xin, Y., et al.: RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab. 24(4), 608–615 (2016)

    Article  Google Scholar 

  15. Kobak, D., Berens, P.: The art of using t-SNE for single-cell transcriptomics. bioRxiv, p. 453449 (2018)

    Google Scholar 

  16. Linderman, G.C., Rachh, M., Hoskins, J.G., Steinerberger, S., Kluger, Y.: Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nat. Methods 16(3), 243 (2019)

    Article  Google Scholar 

  17. Lee, J.A., Peluffo-Ordóñez, D.H., Verleysen, M.: Multi-scale similarities in stochastic neighbour embedding: reducing dimensionality while preserving both local and global structure. Neurocomputing 169, 246–261 (2015)

    Article  Google Scholar 

  18. Jacobs, R.A.: Increased rates of convergence through learning rate adaptation. Neural Networks 1(4), 295–307 (1988)

    Article  Google Scholar 

  19. van der Maaten, L.: Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15(1), 3221–3245 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Macosko, E.Z., et al.: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5), 1202–1214 (2015)

    Article  Google Scholar 

  21. Shekhar, K., et al.: Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166(5), 1308–1323 (2016)

    Article  Google Scholar 

  22. Bard, J., Rhee, S.Y., Ashburner, M.: An ontology for cell types. Genome Biol. 6(2), R21 (2005)

    Article  Google Scholar 

  23. Wolf, F.A., Angerer, P., Theis, F.J.: SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19(1), 15 (2018)

    Article  Google Scholar 

  24. Domingos, P.M.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)

    Article  Google Scholar 

  25. Islam, S., et al.: Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11(2), 163 (2014)

    Article  Google Scholar 

  26. Kiselev, V.Y., Yiu, A., Hemberg, M.: scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15(5), 359 (2018)

    Article  Google Scholar 

  27. Rozenblatt-Rosen, O., Stubbington, M.J.T., Regev, A., Teichmann, S.A.: The Human Cell Atlas: from vision to reality. Nat. News 550(7677), 451 (2017)

    Article  Google Scholar 

  28. Poličar, P.G., Stražar, M., Zupan, B.: openTSNE: a modular Python library for t-SNE dimensionality reduction and embedding. bioRxiv (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovenian Research Agency Program Grant P2-0209, and by the BioPharm.SI project supported from European Regional Development Fund and the Slovenian Ministry of Education, Science and Sport. We would also like to thank Dmitry Kobak for many helpful discussions on t-SNE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlin G. Poličar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poličar, P.G., Stražar, M., Zupan, B. (2019). Embedding to Reference t-SNE Space Addresses Batch Effects in Single-Cell Classification. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds) Discovery Science. DS 2019. Lecture Notes in Computer Science(), vol 11828. Springer, Cham. https://doi.org/10.1007/978-3-030-33778-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33778-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33777-3

  • Online ISBN: 978-3-030-33778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics