Skip to main content

Mining a Maximum Weighted Set of Disjoint Submatrices

  • Conference paper
  • First Online:
Discovery Science (DS 2019)

Abstract

The objective of the maximum weighted set of disjoint submatrices problem is to discover K disjoint submatrices that together cover the largest sum of entries of an input matrix. It has many practical data-mining applications, as the related biclustering problem, such as gene module discovery in bioinformatics. It differs from the maximum-weighted submatrix coverage problem introduced in [6] by the explicit formulation of disjunction constraints: submatrices must not overlap. In other words, all matrix entries must be covered by at most one submatrix. The particular case of \(K=1\), called the maximal-sum submatrix problem, was successfully tackled with constraint programming in [5]. Unfortunately, the case of \(K > 1\) is more challenging to solve as the selection of rows cannot be decided in polynomial time solely from the selection of K sets of columns. It can be proved to be \(\mathcal {NP}\)-hard. We introduce a hybrid column generation approach using constraint programming to generate columns. It is compared to a standard mixed integer linear programming (MILP) through experiments on synthetic datasets. Overall, fast and valuable solutions are found by column generation while the MILP approach cannot handle a large number of variables and constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [11] for an introduction to CP.

  2. 2.

    Given that the problem is a maximization problem.

  3. 3.

    Equation (8) uses the set notation to implicitly remove duplicates.

References

  1. Gurobi Optimization, LLC (2018). http://www.gurobi.com

  2. Aloise, D., Hansen, P., Liberti, L.: An improved column generation algorithm for minimum sum-of-squares clustering. Math. Program. 131(1), 195–220 (2012)

    Article  MathSciNet  Google Scholar 

  3. Bentley, J.: Programming pearls: algorithm design techniques. Commun. ACM 27(9), 865–873 (1984)

    Article  MathSciNet  Google Scholar 

  4. Branders, V., Derval, G., Schaus, P., Dupont, P.: Dataset generator for Mining a maximum weighted set of disjoint submatrices, August 2019. https://doi.org/10.5281/zenodo.3372282

  5. Branders, V., Schaus, P., Dupont, P.: Combinatorial optimization algorithms to mine a sub-matrix of maximal sum. In: Appice, A., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2017. LNCS (LNAI), vol. 10785, pp. 65–79. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78680-3_5

    Chapter  Google Scholar 

  6. Derval, G., Branders, V., Dupont, P., Schaus, P.: The maximum weighted submatrix coverage problem: a CP approach. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 258–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_17

    Chapter  Google Scholar 

  7. Desaulniers, G., Desrosiers, J., Solomon, M.M.: Column Generation, vol. 5. Springer, Boston (2006). https://doi.org/10.1007/b135457

    Book  MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    MATH  Google Scholar 

  9. Le Van, T., van Leeuwen, M., Nijssen, S., Fierro, A.C., Marchal, K., De Raedt, L.: Ranked tiling. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp. 98–113. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-9_7

    Chapter  Google Scholar 

  10. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 1(1), 24–45 (2004)

    Article  Google Scholar 

  11. Michel, L., Schaus, P., Van Hentenryck, P.: MiniCP: a lightweight solver for constraint programming (2018). https://minicp.bitbucket.io

  12. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar

  13. Savelsbergh, M.: A branch-and-price algorithm for the generalized assignment problem. Oper. Res. 45(6), 831–841 (1997)

    Article  MathSciNet  Google Scholar 

  14. Takaoka, T.: Efficient algorithms for the maximum subarray problem by distance matrix multiplication. Electron. Notes Theoret. Comput. Sci. 61, 191–200 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Branders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Branders, V., Derval, G., Schaus, P., Dupont, P. (2019). Mining a Maximum Weighted Set of Disjoint Submatrices. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds) Discovery Science. DS 2019. Lecture Notes in Computer Science(), vol 11828. Springer, Cham. https://doi.org/10.1007/978-3-030-33778-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33778-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33777-3

  • Online ISBN: 978-3-030-33778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics