Skip to main content

Deep Triplet-Driven Semi-supervised Embedding Clustering

  • Conference paper
  • First Online:
Discovery Science (DS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11828))

Included in the following conference series:

Abstract

In most real world scenarios, experts dispose of limited background knowledge that they can exploit for guiding the analysis process. In this context, semi-supervised clustering can be employed to leverage such knowledge and enable the discovery of clusters that meet the analysts’ expectations. To this end, we propose a semi-supervised deep embedding clustering algorithm that exploits triplet constraints as background knowledge within the whole learning process. The latter consists in a two-stage approach where, initially, a low-dimensional data embedding is computed and, successively, cluster assignment is refined via the introduction of an auxiliary target distribution. Our algorithm is evaluated on real-world benchmarks in comparison with state-of-the-art unsupervised and semi-supervised clustering methods. Experimental results highlight the quality of the proposed framework as well as the added value of the new learnt data representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gitlab.irstea.fr/dino.ienco/ts2dec.

References

  1. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Basu, S., Banerjee, A., Mooney, R.J.: Semi-supervised clustering by seeding. In: ICML, pp. 27–34 (2002)

    Google Scholar 

  3. Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised clustering. In: KDD, pp. 59–68 (2004)

    Google Scholar 

  4. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised clustering. In: ICML, pp. 81–88 (2004)

    Google Scholar 

  5. Cucuringu, M., Koutis, I., Chawla, S., Miller, G.L., Peng, R.: Simple and scalable constrained clustering: a generalized spectral method. In: AISTATS, pp. 445–454 (2016)

    Google Scholar 

  6. Davidson, I., Ravi, S.S.: Intractability and clustering with constraints. In: ICML, pp. 201–208 (2007)

    Google Scholar 

  7. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: ICML, pp. 209–216 (2007)

    Google Scholar 

  8. Haiyan, W., Haomin, Y., Xueming, L., Haijun, R.: Semi-supervised autoencoder: a joint approach of representation and classification. In: CICN, pp. 1424–1430 (2015)

    Google Scholar 

  9. Harwood, B., Kumar B.G., Carneiro, G., Reid, I.D., Drummond, T.: Smart mining for deep metric learning. In: ICCV, pp. 2840–2848 (2017)

    Google Scholar 

  10. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  11. Ienco, D., Pensa, R.G.: Semi-supervised clustering with multiresolution autoencoders. In: IJCNN, pp. 1–8 (2018)

    Google Scholar 

  12. Kalintha, W., Ono, S., Numao, M., Fukui, K.: Kernelized evolutionary distance metric learning for semi-supervised clustering. In: AAAI, pp. 4945–4946 (2017)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014), http://arxiv.org/abs/1412.6980

  14. Klein, D., Kamvar, S.D., Manning, C.D.: From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering. In: ICML, pp. 307–314 (2002)

    Google Scholar 

  15. Kumar, N., Kummamuru, K.: Semisupervised clustering with metric learning using relative comparisons. IEEE Trans. Knowl. Data Eng. 20(4), 496–503 (2008)

    Article  Google Scholar 

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436, May 2015. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  17. van der Maaten, L., Hinton, G.E.: Visualizing high-dimensional data using t-sne. JMLR 9, 2579–2605 (2008)

    MATH  Google Scholar 

  18. Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., Long, J.: A survey of clustering with deep learning: from the perspective of network architecture. IEEE Access 6, 39501–39514 (2018)

    Article  Google Scholar 

  19. Nogueira, B.M., Tomas, Y.K.B., Marcacini, R.M.: Integrating distance metric learning and cluster-level constraints in semi-supervised clustering. In: IJCNN, pp. 4118–4125 (2017)

    Google Scholar 

  20. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised learning with ladder networks. In: NIPS, pp. 3546–3554 (2015)

    Google Scholar 

  21. Ren, Y., Hu, K., Dai, X., Pan, L., Hoi, S.C.H., Xu, Z.: Semi-supervised deep embedded clustering. Neurocomputing 325, 121–130 (2019)

    Article  Google Scholar 

  22. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. In: ICML, pp. 577–584 (2001)

    Google Scholar 

  24. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017)

    Google Scholar 

  25. Xie, J., Girshick, R.B., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML, pp. 478–487 (2016)

    Google Scholar 

  26. Yu, B., Liu, T., Gong, M., Ding, C., Tao, D.: Correcting the triplet selection bias for triplet loss. In: ECCV, pp. 71–86 (2018)

    Chapter  Google Scholar 

  27. Zhao, Y., Jin, Z., Qi, G., Lu, H., Hua, X.: An adversarial approach to hard triplet generation. In: ECCV, pp. 508–524 (2018)

    Google Scholar 

  28. Zhu, X., Loy, C.C., Gong, S.: Constrained clustering with imperfect oracles. IEEE Trans. Neural Networks Learn. Syst. 27(6), 1345–1357 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dino Ienco or Ruggero G. Pensa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ienco, D., Pensa, R.G. (2019). Deep Triplet-Driven Semi-supervised Embedding Clustering. In: Kralj Novak, P., Ĺ muc, T., DĹľeroski, S. (eds) Discovery Science. DS 2019. Lecture Notes in Computer Science(), vol 11828. Springer, Cham. https://doi.org/10.1007/978-3-030-33778-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33778-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33777-3

  • Online ISBN: 978-3-030-33778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics