Skip to main content

Nucleic Acid Based Nanoconstructs for Environmental Analysis in Atypical Contexts

  • Chapter
  • First Online:
Nanotechnology for Energy and Environmental Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 860 Accesses

Abstract

The use of biomolecules toward environmental analysis provides impressive advantages in terms of selectivity and efficiency. Proteins have served as the classical choice of biomolecules in this regard partly due to their natural function as strong and specific binding agents. Nevertheless, biomolecules are usually considered unsuitable for large-scale environmental applications due to their fragility and cost. In this chapter, we first examine the emergence of nucleic acid based nanotechnology in the context of environmental analysis. Notably, the development of nucleic acid aptamers, aptazymes, and nano-architectures has facilitated application as both a receptor in biosensors as well as versatile scaffolds for engineering functional constructs. Further, we present a proof-of-concept of nucleic acid based nanoconstructs as a reusable adsorbing agent. We have developed nucleic acid three-way junction-based matrices that are capable of retrieval and reuse of a commonly used staining agent. Immobilization of the nucleic acid architectures on magnetic nanoparticles enables their reuse across samples. Inherent sophistication of biomolecules in general and nucleic acid based constructs, in particular, supports their deployment in specialized applications at a smaller scale pertinent to individual human activity. The perspective presented in this chapter is expected to encourage environmental engineering in distinctive and atypical contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amine A, Arduini F, Moscone D, Palleschi G (2016) Recent advances in biosensors based on enzyme inhibition. Biosens Bioelectron 76:180–194

    Article  CAS  Google Scholar 

  • Camacho AS, Martin-Garcia I, Contreras-Celedon C, Chacon-Garcial L, Alonso F (2017) DNA-supported palladium nanoparticles as a reusable catalyst for the copper- and ligand-free Sonogashira reaction. Catal Sci Technol 7:2262–2273

    Article  CAS  Google Scholar 

  • Chilka P, Reddy PR, Datta B (2018) Dimeric carbocyanine dye and nucleic acid aptamer mediated detection of food borne toxin. Indian J Chem 57B:281–286

    CAS  Google Scholar 

  • Datta S, Rene CL, Sriramulu RYR (2013) Enzyme immobilization: an overview on techniques and support materials. Biotech 3:1–9

    Google Scholar 

  • Fu J, Liu M, Liu Y, Woodbury NW, Yan H (2012) Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc 134:5516–5519

    Article  CAS  Google Scholar 

  • Fu J, Yang YR, Johnson-Buck A, Liu M, Liu Y, Walter NG, Woodbury NW, Yan H (2014) Multi-enzyme complexes on DNA scaffolds capable of substrate channeling with an artificial swinging arm. Nat Nanotechnol 9:531–536

    Article  CAS  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine and beyond. Biomed Res Int 329121

    Google Scholar 

  • Hai H, Yang F, Li J (2013) Electrochemiluminescence sensor using quantum dots based on a G-quadruplex aptamer for the detection of Pb2+. RSC Adv 3:13144–13148

    Article  CAS  Google Scholar 

  • Hasegawa H, Savory N, Abe K, Ikebukuro K (2016) Methods for improving aptamer binding affinity. Molecules 21:421

    Article  CAS  Google Scholar 

  • Hirsch JD, Eslamizar L, Filanoski BJ, Lalekzadeh N, Haugland RP, Beecham JM, Haugland RP (2002) Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal Biochem 308:343–357

    Article  CAS  Google Scholar 

  • Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205

    Article  Google Scholar 

  • Hytonen VP (2017) Optimized streptavidin for fluorescent labeling of biotinylated targets. Cell Chem Biol 24:921–922

    Article  CAS  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  CAS  Google Scholar 

  • Klibanov AM, Tu TM, Scott KP (1983) Peroxidase-catalyzed removal of phenols from coal-conversion waste waters. Science 221:259–261

    Article  CAS  Google Scholar 

  • Kumar S, Sharma P, Ratrey P, Datta B (2016) Reusable nanobiocatalysts for the efficient extraction of pigments from orange peel. J Food Sci Technol 53:3013–3019

    Article  CAS  Google Scholar 

  • Li J, Lu Y (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J Am Chem Soc 122:10466–10467

    Article  CAS  Google Scholar 

  • Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2:e201209017

    Article  Google Scholar 

  • Li T, Dong S, Wang E (2009) Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal Chem 81:2144–2149

    Article  CAS  Google Scholar 

  • Liu J, Lu Y (2007a) Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. Chem Comm 46:4872–4874

    Article  CAS  Google Scholar 

  • Liu J, Lu Y (2007b) A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J Am Chem Soc 129:9838–9839

    Article  CAS  Google Scholar 

  • Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 43:496–505

    Article  CAS  Google Scholar 

  • Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29:205–220

    Article  CAS  Google Scholar 

  • Muller J, Niemeyer CM (2008) DNA-directed assembly of artificial multienzyme complexes. Biochem Biophys Res Commun 377:62–67

    Article  CAS  Google Scholar 

  • Munnecke DM (1977) Properties of an immobilized pesticide-hydrolyzing enzyme. Appl Environ Microbiol 33:503–507

    Article  CAS  Google Scholar 

  • Munnecke DM, Hsieh DP (1976) Pathways of microbial metabolism of parathion. Appl Environ Microbiol 31:63–69

    Article  CAS  Google Scholar 

  • Najafabadi ME, Khayamian T, Hashemian Z (2015) Aptamer-conjugated magnetic nanoparticles for extraction of adenosine from urine followed by electrospray ion mobility spectrometry. J Pharm Biomed Anal 107:244–250

    Article  CAS  Google Scholar 

  • Nakata E, Dinh H, Ngo TA, Saimura M, Morii T (2015) A modular zinc finger adaptor accelerates the covalent linkage of proteins at specific locations on DNA nanoscaffolds. Chem Comm 51:1016–1019

    Article  CAS  Google Scholar 

  • Niemeyer CM, Koehler J, Wuerdemann C (2002) DNA-directed assembly of bienzymic complexes from in vivo biotinylated NAD(P)H:FMN oxidoreductase and luciferase. ChemBioChem 3:242–245

    Article  CAS  Google Scholar 

  • Niemirowicz K, Surel U, Wilczewska AZ, Mystkowska J, Piktel E, Gu X, Namiot Z, Kulakowska A, Savage PB, Bucki R (2015) Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J Nanobiotechnol 13:32

    Article  CAS  Google Scholar 

  • Park HJ, McConnell JT, Boddhi S, Kipper MJ, Johnson PA (2011) Synthesis and characterization of enzyme-magnetic nanoparticle complexes: effect of size on activity and recovery. Colloids Surf B Biointerfaces 83:198–203

    Article  CAS  Google Scholar 

  • Ranjan B, Pillai S, Permaul K, Singh S (2019) Simultaneous removal of heavy metals and cyanate in a wastewater sample using immobilized cyanate hydratase on magnetic-multiwall carbon nanotubes. J Hazard Mater 363:73–80

    Article  CAS  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  Google Scholar 

  • Schmitt DL, An S (2017) Spatial organization of metabolic enzyme complexes in cells. Biochemistry 56:3184–3196

    Article  CAS  Google Scholar 

  • Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  CAS  Google Scholar 

  • Shen L, Chen Z, Li Y, He S, Xie S, Xu X, Liang Z, Meng X, Li Q, Zhu Z, Li M, Le XC, Shao Y (2008) Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au Bio-Bar codes. Anal Chem 80:6323–6328

    Article  CAS  Google Scholar 

  • Tuma RS, Beaudet MP, Jin X, Jones LJ, Cheung C-Y, Yue S, Singer VL (1999) Characterization of SYBR gold nucleic acid gel stain: a dye optimized for use with 300 nm ultraviolet transilluminators. Anal Biochem 268:278–288

    Article  CAS  Google Scholar 

  • Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis, optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14:964

    Article  CAS  Google Scholar 

  • van de Velde F, Lourenco ND, Pinheiro HM, Bakker M (2002) Carrageenan: a food-grade and biocompatible support for immobilization techniques. Adv Synth Catal 344:815–835

    Article  Google Scholar 

  • Wallace S, Balskus EP (2014) Opportunities for merging chemical and biological synthesis. Curr Opin Biotechnol 30:1–8

    Article  CAS  Google Scholar 

  • Zhang F, Nangreave J, Liu Y, Yan H (2014) Structural DNA nanotechnology: state of the art and future perspective. J Am Chem Soc 136:11198–11211

    Article  CAS  Google Scholar 

  • Zhang L, Guo S, Zhu J, Zhou Z, Li T, Li J, Dong S, Wang E (2015) Engineering DNA three-way junction with multifunctional moieties: sensing platform for bioanalysis. Anal Chem 87:11295–11300

    Article  CAS  Google Scholar 

  • Zhang X-B, Kong R-M, Lu Y (2011) Metal ion sensors based on DNAzymes and related DNA molecules. Ann Rev Anal Chem 4:105–128

    Article  CAS  Google Scholar 

  • Zhang Y, Hess H (2017) Toward rational design of high-efficiency enzyme cascades. ACS Catal 7:6018–6027

    Article  CAS  Google Scholar 

  • Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucl Acids Res 32:e103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Human Resource and Development (MHRD), Govt. of India for financial support of this work through IMPRINT grant no. 6349.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singhal, A., Kapil, K., Dodla, A., Kumar, S., Datta, B. (2020). Nucleic Acid Based Nanoconstructs for Environmental Analysis in Atypical Contexts. In: Ledwani, L., Sangwai, J. (eds) Nanotechnology for Energy and Environmental Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-33774-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33774-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33773-5

  • Online ISBN: 978-3-030-33774-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics