Skip to main content

A Comprehensive Characterization of Stress Relaxed ZnO Thin Film at Wafer Level

  • Chapter
  • First Online:
Nanotechnology for Energy and Environmental Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 808 Accesses

Abstract

The chapter goes onto explore the impact of sputtering parameters on structural, optical, and mechanical properties of reactive magnetron sputtered ZnO thin film. Stress relaxed and room temperature deposited ZnO film is highly desirable from fabrication aspects. Oxygen partial pressure is varied from 30 to 60% and c-axis oriented ZnO (002) thin films are prepared at room temperature. The stress varies in −0.06 × 109 to −2.27 × 109 dyne/cm2 range, and compressive in nature. A detailed characterization of ZnO sputtered film is carried out in order to correlate the mechanical, structural, and optical properties of thin film. A theoretical model has been proposed to understand the consequences of oxygen-induced stress in ZnO thin films. It is established that nearly stress-free, single-phase, and highly c-axis oriented ZnO thin film can be deposited using a unique combination of sputter parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal DC, Chauhan RS, Amit Kumar D, Kabiraj F, Singh SA, Khan DK, Avasthi JC, Pivin M, Kumar JG, Satyam PV (2006) Synthesis and characterization of ZnO thin film grown by electron beam evaporation. J Appl Phys 99:123105

    Article  CAS  Google Scholar 

  • Arguello CA, Rousseau DL, Porto SPS (1969) First-order Raman effect in wurtzite-type crystals. Phys Rev 181:1351

    Article  CAS  Google Scholar 

  • Ashrafi ABMA, Binh NT, Zhang BP, Segawa Y (2004) Strain relaxation and its effect in exciton resonance energies of epitaxial ZnO layers grown on 6H-SiC substrates. Appl Phys Lett 84:2814

    Article  CAS  Google Scholar 

  • Baraki R, Novak N, Frömling T, Granzow T, Rödel J (2014) Bulk ZnO as piezotronic pressure sensor. App Phys Lett 105:111604

    Article  CAS  Google Scholar 

  • Conchon F, Renault PO, Goudeau P, Le Bourhis E, Sondergard E, Barthel E, Grachev S, Gouardes E, Rondeau V, Gy R, Lazzari R, Jupille J, Brun N (2010) X-ray diffraction analysis of thermally-induced stress relaxation in ZnO films deposited by magnetron sputtering on (100) Si substrates. Thin Sol Films 518:5237

    Article  CAS  Google Scholar 

  • Damen TC, Porto PS, Tell B (1966) Raman effect in zinc oxide. Phy Review 142:570

    Article  CAS  Google Scholar 

  • Drese RJ, Wuttig M (2005) Stress evolution during growth in direct-current-sputtered zinc oxide films at various oxygen flows. J Appl Phys 98:073514

    Article  CAS  Google Scholar 

  • El Zawawi LK, Abd Alla RA (1999) Electrical and optical phototransformation properties in As doped Se thin films. Thin Sol Films 339:314

    Article  Google Scholar 

  • Engelmark F, Fucntes G, Katardjiev IV, Harsta A, Smithand U, Berg S (2000). Synthesis of highly oriented piezoelectric AlN films by reactive sputter deposition. J Vac Sci Technol A 18:1609

    Google Scholar 

  • Fu YQ, Luo JK, Du XY, Flewitt AJ, Li Y, Markx GH, Walton AJ, Milne WI (2010) Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens Actuators B 143:606

    Article  CAS  Google Scholar 

  • Gardeniers JGE, Rittersma ZM, Burger GJ (1998) Preferred orientation and piezoelectricity in sputtered ZnO films. J Appl Phys 83:7844

    Article  CAS  Google Scholar 

  • Ghosh R, Basak D, Fujihara S (2004) Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J Appl Phys 96:2689

    Article  CAS  Google Scholar 

  • Iborra E, Olivares J, Clement M, Vergara J, Sanz-Hervas A, Sangrador J (2004) Piezoelectric properties and residual stress of sputtered AlN thin films for MEMS applications. Sens Actuators A 115:501

    Article  CAS  Google Scholar 

  • Ivanova T, Harizanova A, Koutzarova T, Vertruyen B (2010) Study of ZnO sol–gel films: effect of annealing. Mater Lett 64:1147

    Article  CAS  Google Scholar 

  • Joshi P, Singh J, Sharma R, Jain VK, Akhtar J (2018) A facile approach to fabricate ZnO thin film based micro-cantilevers. Microelectron Eng 187–188:50–57

    Article  CAS  Google Scholar 

  • Joshi P, Kumar S, Jain VK, Akhtar J, Singh J (2019) Distributed MEMS mass-sensor based on piezoelectric resonant micro-cantilevers. J Microelectromech Syst. https://doi.org/10.1109/JMEMS.2019.2908879

    Article  Google Scholar 

  • Jou JH, Han M-Y, Cheng D-J (1992) Substrate dependent internal stress in sputtered zinc oxide thin films. J Appl Phys 71:4333

    Article  CAS  Google Scholar 

  • Karthikeyan B, Pandiyarajan T, Mangalaraj RV (2016) Enhanced blue light emission in transparent ZnO: PVA nanocomposite free standing polymer films. Spectrochim Acta A 152:485

    Article  CAS  Google Scholar 

  • Krupanidhi SB, Sayer M (1984) Position and pressure effects in RF magnetron reactive sputter deposition of piezoelectric zinc oxide. J Appl Phys 56:3308

    Google Scholar 

  • Kunj S, Sreenivas K (2016) Residual stress and defect content in magnetron sputtered ZnO films grown on unheated glass substrates. Curr Appl Phys 16:748

    Google Scholar 

  • Laidani N, Capelletti R, Elena M, Guzman L, Mariotto G, Miotello A, Ossi PM (1993) Spectroscopic characterization of thermally treated carbon-rich Si1–xCx films. Thin Sol Films 223:114

    Article  CAS  Google Scholar 

  • Li YF, Yao B, Lu YM, Cong CX, Zhang ZZ, Gai YQ, Zheng CJ, Li BH, Wei ZP, Shen DZ, Fan XW, Xiao L, Xu SC, Liu Y (2007) Characterization of biaxial stress and its effect on optical properties of ZnO thin films. Appl Phys Lett 91:021915

    Google Scholar 

  • Loebl HP, Klee M, Metzmacher C, Brand W, Milsom R, Lok P (2003) Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators. Mat Chem Phys 79:143

    Article  CAS  Google Scholar 

  • Maniv S, Westwood WD, Colombini E (1982) Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers. J Vac Sci Technol 20:162

    Article  CAS  Google Scholar 

  • Mass J, Bhattacharya P, Katiyar RS (2003) Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition. Mater Sci Eng B 103:9

    Article  CAS  Google Scholar 

  • McCluskey MD, Jokela SJ (2009) Defects in ZnO. J Appl Phys 106:071101

    Article  CAS  Google Scholar 

  • Menon R, Sreenivas K, Gupta V (2008) Influence of stress on the structural and dielectric properties of RF magnetron sputtered zinc oxide thin film. J Appl Phys 103:094903

    Article  CAS  Google Scholar 

  • Menon R, Gupta V, Tan HH, Sreenivas K, Jagadish C (2011) Origin of stress in radio frequency magnetron sputtered zinc oxide thin films. J Appl Phys 109:064905

    Article  CAS  Google Scholar 

  • Mohanty BC, Jo YH, Yeon DH, Choi IJ, Choa YS (2009) Stress-induced anomalous shift of optical band gap in ZnO: Al thin films. Appl Phys Lett 95:062103

    Article  CAS  Google Scholar 

  • Ondo-Ndong R, Ferblantier G, Kalfioui MA, Boyer A, Foucaran A (2003) Properties of RF magnetron sputtered zinc oxide thin films. J Cryst Growth 255:130

    Article  CAS  Google Scholar 

  • Orikasa Y, Hayashi N, Muranaka S (2008) Effects of oxygen gas pressure on structural, electrical, and thermoelectric properties of (ZnO)3In2O3 thin films deposited by RF magnetron sputtering. J Appl Phys 103:113703

    Article  CAS  Google Scholar 

  • Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    Article  CAS  Google Scholar 

  • Ping Y, Pei L, Li-Qiang Z, Xiao-Liang W, Huan W, Xi-Fu S, Fang-Wei X (2012) Uniaxial stress influence on lattice, band gap and optical properties of n-type ZnO: first-principles calculations. Chin Phys B 21:016803

    Article  CAS  Google Scholar 

  • Rao TP, Kumar MCS, Angayarkanni SA, Ashok M (2009) Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis. J Alloy Comp 485:413

    Article  CAS  Google Scholar 

  • Rieger W, Metzger T, Angerer H, Dimitrov R, Ambacher O, Stutzmann M (1996) Influence of substrate-induced biaxial compressive stress on the optical properties of thin GaN films. Appl Phys Lett 68:970

    Article  CAS  Google Scholar 

  • Shan W, Hauenstein RJ, Fischer AJ, Song JJ, Perry WG, Bremser MD, Davis RF, Goldenberg B (1996) Strain effects on excitonic transitions in GaN: deformation potentials. Phys Rev B 54:13460

    Article  CAS  Google Scholar 

  • Singh P, Kumar A, Deepak DK (2007b) Growth and characterization of ZnO nanocrystalline thin films and nanopowder via low-cost ultrasonic spray pyrolysis. J Cryst Growth 306:303

    Article  CAS  Google Scholar 

  • Singh R, Kumar M, Chandra S (2007a) Growth and characterization of high resistivity C-axis oriented ZnO films on different substrates by RF magnetron sputtering for MEMS applications. J Mater Sci 42:4675

    Article  CAS  Google Scholar 

  • Singh Jitendra, Ranwa Sapana, Akhtar Jamil, Kumar Mahesh (2015) Growth of residual stress-free ZnO films on SiO2/Si substrate at room temperature for MEMS devices. AIP Adv 5:067140

    Article  CAS  Google Scholar 

  • Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc London Ser A 82:172

    Google Scholar 

  • Sun Y, Miyasato T, Wigmore JK (1999) Characterization of excess carbon in cubic SiC films by infrared absorption. J Appl Phys 85:3377

    Article  CAS  Google Scholar 

  • Tauc J, Grigo Rovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Physica Status Sol (b) 15:627

    Article  CAS  Google Scholar 

  • Trodahl HJ, Martin F, Muralt P, Setter N (2006) Raman spectroscopy of sputtered AlN films: E2(high) biaxial strain dependence. Appl Phys Lett 89:061905

    Article  CAS  Google Scholar 

  • Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242

    Article  CAS  Google Scholar 

  • Wang BB, Shaob RW, Huangc X, Zheng K, Zhu K, Cheng QJ (2016) Structure and photoluminescence properties of graphene nanoflakes grown on zinc oxide films by hot filament chemical vapor deposition. Diam Relat Mater 64:42

    Article  CAS  Google Scholar 

  • Yang Z, Ye Z, Xu Z, Zhao BH (2009) Effect of the morphology on the optical properties of ZnO nanostructured. Physica E 42:116

    Article  CAS  Google Scholar 

  • Zhang Y, Jia H, Wang R, Chen C, Luo X, Yua D (2003) Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Appl Phys Lett 83:4631

    Article  CAS  Google Scholar 

  • Zhao DG, Xu SJ, Xie MH, Tong SY (2003) Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. Appl Phys Lett 83:677

    Article  CAS  Google Scholar 

  • Zhou B, Rogachev AV, Liu Z, Piliptsou DG, Ji H, Jiang X (2012) Effects of oxygen/argon ratio and annealing on structural and optical properties of ZnO thin films. Appl Surf Sci 258:5759

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director CSIR-CEERI Pilani for continuous support and encouragement. This research work was supported by the 12th Plan network project PSC-0102 (R-Nano). Mr. Arvind Kumar Singh and Mr. Prateek Kothari helped to maintain ZnO sputtering machine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, P., Singh, J., Jain, V.K., Akhtar, J. (2020). A Comprehensive Characterization of Stress Relaxed ZnO Thin Film at Wafer Level. In: Ledwani, L., Sangwai, J. (eds) Nanotechnology for Energy and Environmental Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-33774-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33774-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33773-5

  • Online ISBN: 978-3-030-33774-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics