Skip to main content

Functionalized Nano-porous Silicon Surfaces for Energy Storage Application

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Energy storage has been of a topic of curiosity since long for a persistent human activity. Storing power from several intermittent sources has been a great interest of scientific community and grows as the renewable energy industry begins to generate a larger fraction of overall energy consumption. Several renewable sources of energy exist, e.g., wind energy, solar energy, bioenergy, etc., but the problem is to store this energy and again reuse it when needed. For that an electrode is required that has high-energy storage capacity. The electrode that has a very large surface area, long durability, and high conductivity is prerequisite. Electrochemically prepared porous silicon where the physical properties, e.g., pore diameter, porosity, and pore length can be controlled by etching parameter and the functionalized nanostructured surfaces of porous silicon, might be the key material to develop high-energy storage electrodes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramof PG, Beloto AF, Ueta AY, Ferreira NG (2006) X-ray investigation of nanostructured stain-etched porous silicon. J Appl Phys 99:024304

    Article  Google Scholar 

  • Bogart TD et al (2014) Lithium ion battery peformance of silicon nanowires with carbon skin. ACS Nano 8:915–922

    Article  CAS  Google Scholar 

  • Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046

    Article  CAS  Google Scholar 

  • Desplobain S, Gautier G, Semai J, Ventura L, Roy M (2007) Investigations on porous silicon as electrode material in electrochemical capacitors. Phys Status Solidi C 4:2180–2184

    Article  CAS  Google Scholar 

  • Dian J, Konečný M, Broncová G, Kronďák M, Matolínová I (2013) Electrochemical fabrication and characterization of porous silicon/polypyrrole composites and chemical sensing of organic vapors. Int J Electrochem Sci 8:1559–1572

    CAS  Google Scholar 

  • Foll H, Carstensen J, Frey S (2006) Porous and nanoporous semiconductors and emerging applications. J Nanomater 2006:91635

    Article  Google Scholar 

  • Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1–974

    Article  Google Scholar 

  • Gaur G, Koktysh DS, Weiss SM (2013) Immobilization of quantum dots in nanostructured porous silicon films: characterizations and signal amplification for dual-mode optical biosensing. Adv Funct Mater 23:3712

    Article  Google Scholar 

  • Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918

    Article  CAS  Google Scholar 

  • Granitzer P, Rumpf K (2010) Porous silicon-a versatile host material. Materials 3:943–998

    Article  CAS  Google Scholar 

  • Gupta R et al (2011) Application of energy storage devices in power systems. Int J Eng Sci Technol 3:289–297

    Google Scholar 

  • Herino R, Bomchil G, Barla K, Bertrand C, Ginoux JL (1987) Porosity and pore size distributions of porous silicon layers. J Electrochem Soc 134, 1994

    Google Scholar 

  • Ikonen T et al (2017) Electrochemically anodized porous silicon: towards simple and affordable anode material for Li-ion batteries. Sci Rep 7:1–8

    Article  CAS  Google Scholar 

  • Min-Gi J et al (2016) Nitrogen-doped carbon coated porous silicon as high performance anode material for lithium-ion batteries. Electrochim Acta 209:299–307

    Article  Google Scholar 

  • Jha N, Ramesh P, Bekyarova E, Itkis ME, Haddon RC (2012) High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture. Adv Energy Mater 2:438–444

    Article  CAS  Google Scholar 

  • Kumar P, Huber P (2007) Effect of etching parameter on pore size and porosity of electrochemically formed nanoporous silicon. J Nanomater, Article ID 89718, 4 p

    Google Scholar 

  • Kumar P (2011) Effect of silicon crystal size on photoluminescence appearance in porous silicon. ISRN Nanotechnol, Article ID 163168, 6 p

    Google Scholar 

  • Kumar P et al (2009) Effect of HF concentration on physical and electronic properties of electrochemically formed nano-porous silicon. J Nanomater, Article ID 728957, 7 p

    Google Scholar 

  • Liua H, Wang ZL (2005) Etching silicon wafer without hydrofluoric acid. Appl Phys Lett 87:261913

    Article  Google Scholar 

  • Michler P et al (2000) A quantum dot single-photon turnstile device. Science 290:2282

    Article  CAS  Google Scholar 

  • Oakes L et al (2013) Surface engineered porous silicon for stable, high performance electrochemical supercapacitors. Sci Rep 3:3020

    Article  Google Scholar 

  • Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for li-ion batteries. Chem Rev 114:11444–11502

    Article  CAS  Google Scholar 

  • Palestino AG et al (2007) Fluorescence tuning of confined molecules in porous silicon mirrors. Appl Phys Lett 91:121909

    Article  Google Scholar 

  • Pelton M et al (2002) Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys Rev Lett 89:233602

    Article  Google Scholar 

  • Rowlands SE, Latham RJ, Schlindwein WS (1999) Supercapacitor devices using porous silicon electrodes. Ionics 5:144–149

    Article  CAS  Google Scholar 

  • Santori C et al (2001) Triggered single photons from a quantum dot. Phys Rev Lett 86:1502

    Article  CAS  Google Scholar 

  • Schuth F, Schmidt W (2002) Microporous and mesoporous materials. Adv Mater 14:629

    Article  CAS  Google Scholar 

  • Smith RL, Collins SD (1992) Porous silicon formation mechanisms. J Appl Phys 71, RI

    Google Scholar 

  • Thissandier F et al (2012) Highly doped silicon nanowires based electrodes for microelectrochemical capacitor applications. Electrochem Commun 25:109–111

    Article  CAS  Google Scholar 

  • Thissandier F, Pauc N, Brousse T, Gentile P, Sadki S (2013) Micro-ultracapacitors with highly doped silicon nanowires electrodes. Nanoscale Res Lett 8:1–5

    Article  Google Scholar 

  • Ulhir A (1956) Electrolytic shaping of germanium and silicon. Bell Syst Tech J 35:333

    Article  Google Scholar 

  • Yuan Z et al (2002) Electrically driven single-photon source. Science 295:102

    Article  CAS  Google Scholar 

  • Zhang XG (2004) Morphology and formation mechanisms of porous silicon. J Electrochem Soc 151:C69–C80

    Article  CAS  Google Scholar 

  • Zhu Y et al (2012) A seamless three-dimensional carbon nanotube graphene hybrid material. Nat, Commun, p 3

    Google Scholar 

  • Zhu J et al (2014) The application of graphene in lithium ion battery electrode materials. Springer Plus 3:585

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P. (2020). Functionalized Nano-porous Silicon Surfaces for Energy Storage Application. In: Ledwani, L., Sangwai, J. (eds) Nanotechnology for Energy and Environmental Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-33774-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33774-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33773-5

  • Online ISBN: 978-3-030-33774-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics