Skip to main content

Trap Effects

  • Chapter
  • First Online:
A Single Trapped Rydberg Ion

Part of the book series: Springer Theses ((Springer Theses))

  • 308 Accesses

Abstract

Rydberg states are extremely sensitive to electric fields. In the seminal theoretical investigation by Müller et al. [1] effects of strong electric trapping fields on highly-sensitive Rydberg ions were predicted. Experimental observation of these effects is presented here. In this chapter we also investigate a Rydberg ion in trapping regimes beyond the consideration of Müller et al.; both theoretically and experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Generally \(\omega _x\ne \omega _y\) and \(\epsilon \ne 0\) and thus \(\vec {\mathrm {r}}_{\mathrm {rf}}\), \(\vec {\mathrm {r}}_{\mathrm {dc}}\) and \(\vec {\mathrm {r}}_{\mathrm {g}}\) are not collinear.

  2. 2.

    Since the Rydberg-excitation lasers counter-propagate (Sect. 4.4), the contribution to phonon-number-changing transitions described by the Lamb–Dicke parameter is small compared with the Franck–Condon factors considered in this section.

  3. 3.

    The linear relation holds for one radial direction provided that the ion is close to the trap centre in the orthogonal radial direction.

References

  1. Müller M, Liang L, Lesanovsky I, Zoller P (2008) Trapped Rydberg ions: from spin chains to fast quantum gates. New J Phys 10:093009

    Article  Google Scholar 

  2. Facon A et al (2016) A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state. Nature 535:262–265

    Article  ADS  Google Scholar 

  3. Higgins G et al (2017) Single strontium Rydberg ion confined in a Paul trap. Phys Rev X\(^{7}\):021038

    Google Scholar 

  4. Higgins G, Pokorny F, Zhang C, Hennrich M (2019) Highly-polarizable ion in a Paul trap. arXiv:1904.08099

  5. Li W, Lesanovsky I (2014) Entangling quantum gate in trapped ions via Rydberg blockade. Appl Phys B 114:37–44

    Article  ADS  Google Scholar 

  6. Berkeland DJ, Miller JD, Bergquist JC, Itano WM, Wineland DJ (1998) Minimization of ion micromotion in a Paul trap. J Appl Phys 83:5025–5033

    Article  ADS  Google Scholar 

  7. Keller J, Partner HL, Burgermeister T, Mehlstäubler TE (2015) Precise determination of micromotion for trapped-ion optical clocks. J Appl Phys 118:104501

    Article  ADS  Google Scholar 

  8. Itano WM (2000) External-field shifts of the \({{}^{199}}\)Hg\(^{+}\) optical frequency standard. J Res Natl Inst Stand Technol 105

    Google Scholar 

  9. Shaniv R, Akerman N, Ozeri R (2016) Atomic quadrupole moment measurement using dynamic decoupling. Phys Rev Lett 116:140801

    Article  ADS  Google Scholar 

  10. Jiang D, Arora B, Safronova MS (2008) Electric quadrupole moments of metastable states of Ca\(^{+}\), Sr\(^{+}\), and Ba\(^{+}\). Phys Rev A 78:022514

    Google Scholar 

  11. Chwalla M (2009) Precision spectroscopy with 4\(^{o}\)Ca\(^{+}\) ions in a Paul trap. PhD thesis, Universität Innsbruck

    Google Scholar 

  12. Friedrich H (2017) Theoretical atomic physics. Springer International Publishing, New York

    Google Scholar 

  13. Bain AD, Dumont RS (2001) Introduction to Floquet theory: the calculation of spinning sideband intensities in magic-angle spinning NMR. Concepts Magn Reson 13:159–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Higgins .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Higgins, G. (2019). Trap Effects. In: A Single Trapped Rydberg Ion. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-33770-4_6

Download citation

Publish with us

Policies and ethics