Skip to main content

Ion Loss by Double Ionisation

  • Chapter
  • First Online:
A Single Trapped Rydberg Ion

Part of the book series: Springer Theses ((Springer Theses))

  • 308 Accesses

Abstract

In our experiment a trapped \(\mathrm {^{88}Sr^+}\) ion is lost by double ionisation after typically several hundred excitations to a Rydberg state. Similarly double ionisation occurs in \({\sim }{}{0.3}{}\mathrm {\%}\) excitations to a Rydberg state in the Mainz experiment [1]. Double ionisation thus presents an obstacle in trapped Rydberg ion experiments, discussed in Sect. 5.1. We know the ion is lost by double ionisation by measuring the final product to be \(\mathrm {^{88}Sr^{2+}}\), these measurements are described in Sect. 5.2. We suspect Rydberg states with higher principal quantum numbers are more prone to double ionisation loss and that blackbody radiation increases the likelihood of double ionisation, though we have yet to carry out a systematic investigation of the effects of different parameters on the ion loss rate. Müller et al.  [2] briefly discuss double ionisation driven by the electric fields of the trap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Switching off the trap is not an option in our experiment because Coulomb repulsion between two ions initially separated by \(5\,\upmu \)m would cause them to become separated by \(30\,\upmu \)m in just \(1\,\upmu \)s.

  2. 2.

    Andor iXon3 897 with pixel size \(16\,\upmu \)m.

References

  1. Feldker T (2017) Rydberg excitation of trapped ions. Ph.D thesis, Johannes Gutenberg-Universität Mainz

    Google Scholar 

  2. Müller M, Liang L, Lesanovsky I, Zoller P (2008) Trapped Rydberg ions: from spin chains to fast quantum gates. New J Phys 10:093009

    Article  Google Scholar 

  3. Leibrandt DR et al (2007) Laser ablation loading of a surfaceelectrode ion trap. Phys Rev A 76:055403

    Article  ADS  Google Scholar 

  4. Łabaziewicz J (2008) High fidelity quantum gates with ions in cryogenic microfabricated ion traps. Ph.D thesis, Massachusetts Institute of Technology

    Google Scholar 

  5. Kielpinski D, Monroe C, Wineland DJ (2002) Architecture for a large-scale ion-trap quantum computer. Nature 417:709

    Article  ADS  Google Scholar 

  6. Ofek N et al (2016) Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536:441

    Article  ADS  Google Scholar 

  7. Browaeys A, Barredo D, Lahaye T (2016) Experimental investigations of dipole-dipole interactions between a few Rydberg atoms. J Phys B 49:152001

    Article  ADS  Google Scholar 

  8. Saffman M (2016) Quantum computing with atomic qubits and Rydberg interactions: progresss s and challenges. J Phys B 49:202001

    Article  ADS  Google Scholar 

  9. Saffman M, Walker TG (2005) Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys Rev A 72:022347

    Google Scholar 

  10. Potvliege RM, Adams CS (2006) Photo-ionization in far-offresonance optical lattices. New J Phys 8:163

    Article  Google Scholar 

  11. Johnson TA et al (2008) Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions. Phys Rev Lett 100:113003

    Article  ADS  Google Scholar 

  12. Saffman M, Walker TG, Mølmer K (2010) Quantum information with Rydberg atoms. Rev Mod Phys 82:2313–2363

    Article  ADS  Google Scholar 

  13. Beterov II, Tretyakov DB, Ryabtsev II, Ekers A, Bezuglov NN (2007) Ionization of sodium and rubidium nS, nP, and nD Rydberg atoms by blackbody radiation. Phys Rev A 75:052720

    Article  ADS  Google Scholar 

  14. James D (1998) Quantum dynamics of cold trapped ions with application to quantum computation. Appl Phys B 66:181–190

    Article  ADS  Google Scholar 

  15. Home JP, Hanneke D, Jost JD, Leibfried D, Wineland DJ (2011) Normal modes of trapped ions in the presence of anharmonic trap potentials. New J Phys 13:073026

    Article  Google Scholar 

  16. Audi G, Bersillon O, Blachot J, Wapstra A (2003) The Nubase evaluation of nuclear and decay properties. Nucl Phys A 729:3–128

    Article  ADS  Google Scholar 

  17. Nägerl HC, Leibfried D, Schmidt-Kaler F, Eschner J, Blatt R (1998) Coherent excitation of normal modes in a string of \(\text{ Ca }^{+}\) ions. Opt Express 3:89–96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Higgins .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Higgins, G. (2019). Ion Loss by Double Ionisation. In: A Single Trapped Rydberg Ion. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-33770-4_5

Download citation

Publish with us

Policies and ethics