Skip to main content

Introduction

  • Chapter
  • First Online:
A Single Trapped Rydberg Ion

Part of the book series: Springer Theses ((Springer Theses))

  • 305 Accesses

Abstract

In the last decades researchers have achieved exquisite control of different quantum systems. This has allowed fundamental tests to be carried out, including studies of quantum measurements [1, 2], quantum contextuality [3] and the wave function [4, 5]; as well as Bell test experiments [6,7,8]. New technologies which take advantage of highly-controlled quantum systems are being pursued [9], and proof of principle devices capable of quantum computation [10, 11], quantum simulation [12], quantum communication [13] and quantum metrology [14] have been demonstrated. Some systems are more suitable than others as platforms for particular quantum technologies, just as some systems are more suitable than others for carrying out particular fundamental tests. For instance, the long coherence times of trapped ion qubits make for excellent quantum memories [15], while the propagation speed of photonic qubits allows the locality loophole to be closed in Bell test experiments. My thesis is concerned with a new experimental platform, namely a system of trapped Rydberg ions. This platform combines two established systems: trapped atomic ions and Rydberg atoms. In this opening chapter aspects of the two constituent technologies are summarised before trapped Rydberg ions are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A recent preprint reports a genuine multipartite entangled state of 18 qubits stored on 6 photons [22].

  2. 2.

    While Rydberg-mediated nonlinear quantum optics is an exciting research field, it is unlikely to be closely linked to the novel trapped Rydberg ion system explored in this thesis. This is because trapped ion systems have much lower optical depths than atomic clouds. However, cavities could conceivably be used to enhance coupling between ions and either ultraviolet (UV) Rydberg-excitation photons or MW photons which couple Rydberg states [58, 59], to allow for nonlinear quantum optics mediated by Rydberg ions.

  3. 3.

    Rydberg states are not used for storing qubits because the lifetimes of the low-lying states typically used as qubits (\({}{\sim 1}{}\,\mathrm {s}\)) are around five orders of magnitude longer than Rydberg states with \(n=50\) (\({}{\sim 10}{}\,{{\upmu }\mathrm{s}}\)), while similar Rabi frequencies are used to manipulate low-lying states and to excite Rydberg states (\({}{\sim 2}{}\pi \times 1\,\mathrm {MHz}\)).

  4. 4.

    Throughout this thesis Russell-Saunders term symbols \(L_J\) describe total angular momentum quantum numbers. The multiplicity \(2S+1=2\) is omitted.

References

  1. Itano WM (2009) Perspectives on the quantum Zeno paradox. J Phys Conf Ser 196:012018

    Article  Google Scholar 

  2. Kocsis S et al (2011) Observing the average trajectories of single photons in a two-slit interferometer. Science 332:1170–1173

    Article  ADS  MATH  Google Scholar 

  3. Lapkiewicz R et al (2011) Experimental non-classicality of an indivisible quantum system. Nature 474:490

    Article  Google Scholar 

  4. Ringbauer M et al (2015) Measurements on the reality of the wavefunction. Nat Phys 11:249

    Article  Google Scholar 

  5. Nigg D et al (2016) Can different quantum state vectors correspond to the same physical state? An experimental test. New J Phys 18:013007

    Article  Google Scholar 

  6. Shalm LK et al (2015) Strong loophole-free test of local realism. Phys Rev Lett 115:250402

    Article  ADS  Google Scholar 

  7. Giustina M et al (2015) Significant-loophole-free test of bell’s theorem with entangled photons. Phys Rev Lett 115:250401

    Article  ADS  Google Scholar 

  8. Hensen B et al (2015) Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526:682–686

    Google Scholar 

  9. Quantum Technologies Roadmap (2016) http://qurope.eu/system/files/QT%20Roadmap%202016_0.pdf. Accessed 29 Jan 2018

  10. Ladd TD et al (2010) Quantum computers. Nature 464:45

    Article  ADS  Google Scholar 

  11. Monz T et al (2016) Realization of a scalable Shor algorithm. Science 351:1068–1070

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Blatt R, Roos CF (2012) Quantum simulations with trapped ions. Nat Phys 8:277

    Article  Google Scholar 

  13. Duan L-M, Monroe C (2010) Colloquium: quantum networks with trapped ions. Rev Mod Phys 82:1209–1224

    Article  ADS  Google Scholar 

  14. Facon A et al (2016) A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state. Nature 535:262–265

    Article  ADS  Google Scholar 

  15. Wang Y et al (2017) Single-qubit quantum memory exceeding tenminute coherence time. Nat Photonics 11:646–650

    Article  ADS  Google Scholar 

  16. Major FG, Gheorghe VN, Werth G (2005) Charged particle traps. Springer, Berlin

    Google Scholar 

  17. Brownnutt M, Kumph M, Rabl P, Blatt R (2015) Ion-trap measurements of electric-field noise near surfaces. Rev Mod Phys 87:1419–1482

    Article  ADS  Google Scholar 

  18. Werth G, Gheorghe VN, Major FG (2009) Charged particle traps II: applications. Springer, Berlin

    Google Scholar 

  19. Harty TP et al (2014) High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys Rev Lett 113:220501

    Article  ADS  Google Scholar 

  20. Ballance CJ, Harty TP, Linke NM, Sepiol MA, Lucas DM (2016) High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys Rev Lett 117:060504

    Article  ADS  Google Scholar 

  21. Gaebler JP et al (2016) High-fidelity universal gate set for 9Be+ ion qubits. Phys Rev Lett 117:060505

    Article  ADS  Google Scholar 

  22. Wang X-L et al (2018) 18-qubit entanglement with photon’s three degrees of freedom. arXiv: 1801.04043

  23. Martinez EA et al (2016) Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534:516

    Article  ADS  Google Scholar 

  24. Zhang J et al (2017) Observation of a discrete time crystal. Nature 543:217

    Article  ADS  Google Scholar 

  25. Smith J et al (2016) Many-body localization in a quantum simulator with programmable random disorder. Nat Phys 12:907

    Article  Google Scholar 

  26. Zhang J et al (2017) Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551:601

    Article  ADS  Google Scholar 

  27. Barreiro JT et al (2011) An open-system quantum simulator with trapped ions. Nature 470:486

    Article  ADS  Google Scholar 

  28. Clos G, Porras D, Warring U, Schaetz T (2016) Time-resolved observation of thermalization in an isolated quantum system. Phys Rev Lett 117:170401

    Article  ADS  Google Scholar 

  29. Neyenhuis B et al (2017) Observation of prethermalization in long-range interacting spin chains. Sci Adv 3(8):e1700672

    Google Scholar 

  30. Eisert J, Friesdorf M, Gogolin C (2015) Quantum many-body systems out of equilibrium. Nat Phys 11:124

    Article  Google Scholar 

  31. Roßnagel J et al (2016) A single-atom heat engine. Science 352:325–329

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. O’Malley PJJ et al (2016) Scalable quantum simulation of molecular energies. Phys Rev X 6:031007

    Google Scholar 

  33. Shen Y et al (2017) Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure. Phys Rev A 95:020501

    Article  ADS  Google Scholar 

  34. Vandersypen LMK et al (2001) Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414:883

    Article  ADS  Google Scholar 

  35. Lu C-Y, Browne DE, Yang T, Pan J-W (2007) Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits. Phys Rev Lett 99:250504

    Article  ADS  Google Scholar 

  36. Lanyon BP et al (2007) Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys Rev Lett 99:250505

    Article  ADS  Google Scholar 

  37. Lucero E et al (2012) Computing prime factors with a Josephson phase qubit quantum processor. Nat Phys 8:719

    Article  Google Scholar 

  38. Chiaverini J et al (2004) Realization of quantum error correction. Nature 432:602

    Article  ADS  Google Scholar 

  39. Schindler P et al (2011) Experimental repetitive quantum error correction. Science 332:1059–1061

    Article  ADS  Google Scholar 

  40. Nigg D et al (2014) Quantum computations on a topologically encoded qubit. Science 345:302–305

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Leibfried D et al (2004) Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304:1476–1478

    Article  ADS  Google Scholar 

  42. Roos CF, Chwalla M, Kim K, Riebe M, Blatt R (2006) ‘Designer atoms’ for quantum metrology. Nature 443:316

    Article  ADS  Google Scholar 

  43. Chou CW, Hume DB, Koelemeij JCJ, Wineland DJ, Rosenband T (2010) Frequency comparison of two high-accuracy Al+ optical clocks. Phys Rev Lett 104:070802

    Article  ADS  Google Scholar 

  44. Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E (2016) Single-ion atomic clock with \(3 \times 10^{-18}\) systematic uncertainty. Phys Rev Lett 116:063001

    Google Scholar 

  45. Mølmer K, Sørensen A (1999) Multiparticle entanglement of hot trapped ions. Phys Rev Lett 82:1835–1838

    Article  ADS  Google Scholar 

  46. Wineland DJ et al (1998) Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J Res Natl Inst Stand Technol 103:259–328

    Article  Google Scholar 

  47. Korenblit S et al (2012) Quantum simulation of spin models on an arbitrarylattice with trapped ions. New J Phys 14:095024

    Article  Google Scholar 

  48. Kielpinski D, Monroe C, Wineland DJ (2002) Architecture for a large-scale ion-trap quantum computer. Nature 417:709

    Article  ADS  Google Scholar 

  49. Müller M, Liang L, Lesanovsky I, Zoller P (2008) Trapped Rydberg ions: from spin chains to fast quantum gates. New J Phys 10:093009

    Article  Google Scholar 

  50. Lebedev V, Beigman I (1998) Physics of highly excited atoms and ions. Springer, Berlin

    Google Scholar 

  51. Bethe HA, Salpeter EE (1977) Quantum mechanics of one- and two-electron atoms. Springer, Boston, MA

    Google Scholar 

  52. Browaeys A, Barredo D, Lahaye T (2016) Experimental investigations of dipole-dipole interactions between a few Rydberg atoms. J Phys B 49:152001

    Article  ADS  Google Scholar 

  53. Hagley E et al (1997) Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys Rev Lett 79:1–5

    Article  ADS  Google Scholar 

  54. Isenhower L et al (2010) Demonstration of a neutral atom controlled-NOT quantum gate. Phys Rev Lett 104:010503

    Article  ADS  Google Scholar 

  55. Gross C, Bloch I (2017) Quantum simulations with ultracold atoms in optical lattices. Science 357:995–1001

    Article  ADS  Google Scholar 

  56. Saffman M (2016) Quantum computing with atomic qubits and Rydberg interactions: progresss s and challenges. J Phys B 49:202001

    Article  ADS  Google Scholar 

  57. Firstenberg O, Adams CS, Hofferberth S (2016) Nonlinear quantum optics mediated by Rydberg interactions. J Phys B 49:152003

    Article  ADS  Google Scholar 

  58. Miller R et al (2005) Trapped atoms in cavity QED: coupling quantized light and matter. J Phys B 38:S551

    Article  Google Scholar 

  59. Raimond JM, Brune M, Haroche S (2001) Manipulating quantum entanglement with atoms and photons in a cavity. Rev Mod Phys 73:565–582

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Bendkowsky V et al (2009) Observation of ultralong-range Rydberg molecules. Nature 458:1005

    Article  ADS  Google Scholar 

  61. Niederprüm T et al (2016) Observation of pendular butterfly Rydberg molecules. Nat Commun 7:12820

    Article  ADS  Google Scholar 

  62. Kübler H, Shaffer JP, Baluktsian T, Löw R, Pfau T (2010) Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells. Nat Photonics 4:112

    Article  ADS  Google Scholar 

  63. Tauschinsky A, Thijssen RMT, Whitlock S, van Linden van den Heuvell HB, Spreeuw RJC (2010) Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip. Phys Rev A 81:063411

    Google Scholar 

  64. Fan H et al (2015) Atom based RF electric field sensing. J Phys B 48:202001

    Article  ADS  Google Scholar 

  65. Boulmer J, Camus P, Gagne JM, Pillet P (1987) Laser-microwave ionisation mass spectroscopy of ion Rydberg states: Ba+ spectrum. J Phys B 20:L143

    Article  Google Scholar 

  66. Jones RR, Gallagher TF (1989) Observation of \(Ba^{+} np_{1/2}\) and ngj Rydberg series. J Opt Soc Am B 6:1467–1472

    Google Scholar 

  67. Lange V, Khan MA, Eichmann U, Sandner W (1991) Rydberg states of the strontium ion. Z Phys D 18:319–324

    Article  ADS  Google Scholar 

  68. Li W, Lesanovsky I (2014) Entangling quantum gate in trapped ions via Rydberg blockade. Appl Phys B 114:37–44

    Article  ADS  Google Scholar 

  69. Li W, Glaetzle AW, Nath R, Lesanovsky I (2013) Parallel execution of quantum gates in a long linear ion chain via Rydberg mode shaping. Phys Rev A 87:052304

    Article  ADS  Google Scholar 

  70. Nath R et al (2015) Hexagonal plaquette spin-spin interactions and quantum magnetism in a two-dimensional ion crystal. New J Phys 17:065018

    Article  Google Scholar 

  71. Li W, Lesanovsky I (2012) Electronically excited cold ion crystals. Phys Rev Lett 108:023003

    Article  ADS  Google Scholar 

  72. Feldker T et al (2014) Mode shaping in mixed ion crystals of \(4^{0}Ca^{2+}\) and \(4^{0}Ca^{+}\). Appl Phys B 114:11–16

    Google Scholar 

  73. Feldker T et al (2015) Rydberg excitation of a single trapped ion. Phys Rev Lett 115:173001

    Article  ADS  Google Scholar 

  74. Bachor P, Feldker T, Walz J, Schmidt-Kaler F (2016) Addressing single trapped ions for Rydberg quantum logic. J Phys B 49:154004

    Article  ADS  Google Scholar 

  75. Feldker T (2017) Rydberg excitation of trapped ions. PhD thesis, Johannes Gutenberg-Universität, Mainz

    Google Scholar 

  76. Schmidt-Kaler F et al (2011) Rydberg excitation of trapped cold ions: a detailed case study. New J Phys 13:075014 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Higgins .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Higgins, G. (2019). Introduction. In: A Single Trapped Rydberg Ion. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-33770-4_1

Download citation

Publish with us

Policies and ethics