Skip to main content

DeepGRU: Deep Gesture Recognition Utility

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11844))

Included in the following conference series:

Abstract

We propose DeepGRU, a novel end-to-end deep network model informed by recent developments in deep learning for gesture and action recognition, that is streamlined and device-agnostic. DeepGRU, which uses only raw skeleton, pose or vector data is quickly understood, implemented, and trained, and yet achieves state-of-the-art results on challenging datasets. At the heart of our method lies a set of stacked gated recurrent units (GRU), two fully-connected layers and a novel global attention model. We evaluate our method on seven publicly available datasets, containing various number of samples and spanning over a broad range of interactions (full-body, multi-actor, hand gestures, etc.). In all but one case we outperform the state-of-the-art pose-based methods. For instance, we achieve a recognition accuracy of 84.9% and 92.3% on cross-subject and cross-view tests of the NTU RGB+D dataset respectively, and also 100% recognition accuracy on the UT-Kinect dataset. We show that even in the absence of powerful hardware, or a large amount of training data, and with as little as four samples per class, DeepGRU can be trained in under 10 min while beating traditional methods specifically designed for small training sets, making it an enticing choice for rapid application prototyping and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 21 October 2019

    The given name and family name of an author were not tagged correctly in the originally published article. The author’s given name is “Joseph J.” and his family name is “LaViola.” This was corrected.

Notes

  1. 1.

    Reference implementation is available at: https://github.com/Maghoumi/DeepGRU.

  2. 2.

    A factor of ±0.3 indicates that samples are randomly and non-uniformly (e.g. ) scaled along all axes to [0.7, 1.3] of their original size.

  3. 3.

    Refer to our supplementary material for more details: https://arxiv.org/abs/1810.12514.

References

  1. Anirudh, R., Turaga, P., Su, J., Srivastava, A.: Elastic functional coding of human actions: from vector-fields to latent variables. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3147–3155 (2015)

    Google Scholar 

  2. Avola, D., Bernardi, M., Cinque, L., Foresti, G.L., Massaroni, C.: Exploiting recurrent neural networks and leap motion controller for the recognition of sign language and semaphoric hand gestures. IEEE Trans. Multimed. 21, 234–245 (2018)

    Article  Google Scholar 

  3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Proceedings of ICLR (2015)

    Google Scholar 

  4. Baradel, F., Wolf, C., Mille, J.: Human action recognition: pose-based attention draws focus to hands. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 604–613 (2017)

    Google Scholar 

  5. Baradel, F., Wolf, C., Mille, J., Taylor, G.W.: Glimpse clouds: human activity recognition from unstructured feature points. In: The IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  6. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  7. Boulahia, S.Y., Anquetil, E., Multon, F., Kulpa, R.: Dynamic hand gesture recognition based on 3D pattern assembled trajectories. In: 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6 (2017)

    Google Scholar 

  8. Caputo, F.M., et al.: Online gesture recognition. In: Eurographics Workshop on 3D Object Retrieval (2019)

    Google Scholar 

  9. Cheema, S., Hoffman, M., LaViola, J.J.: 3D gesture classification with linear acceleration and angular velocity sensing devices for video games. Entertain. Comput. 4(1), 11–24 (2013)

    Article  Google Scholar 

  10. Chen, X., Guo, H., Wang, G., Zhang, L.: Motion feature augmented recurrent neural network for skeleton-based dynamic hand gesture recognition. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 2881–2885 (2017)

    Google Scholar 

  11. Cherian, A., Sra, S., Gould, S., Hartley, R.: Non-linear temporal subspace representations for activity recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2197–2206 (2018)

    Google Scholar 

  12. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734 (2014)

    Google Scholar 

  13. De Smedt, Q., Wannous, H., Vandeborre, J.P.: Skeleton-based dynamic hand gesture recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9 (2016)

    Google Scholar 

  14. De Smedt, Q., Wannous, H., Vandeborre, J.-P.: 3D hand gesture recognition by analysing set-of-joints trajectories. In: Wannous, H., Pala, P., Daoudi, M., Flórez-Revuelta, F. (eds.) UHA3DS 2016. LNCS, vol. 10188, pp. 86–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91863-1_7

    Chapter  Google Scholar 

  15. De Smedt, Q., Wannous, H., Vandeborre, J.P., Guerry, J., Le Saux, B., Filliat, D.: Shrec’17 track: 3D hand gesture recognition using a depth and skeletal dataset. In: 10th Eurographics Workshop on 3D Object Retrieval (2017)

    Google Scholar 

  16. Devineau, G., Moutarde, F., Xi, W., Yang, J.: Deep learning for hand gesture recognition on skeletal data. In: 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018), pp. 106–113 (2018)

    Google Scholar 

  17. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1110–1118 (2015)

    Google Scholar 

  18. Fernández-Ramírez, J., Álvarez-Meza, A., Orozco-Gutiérrez, Á.: Video-based human action recognition using kernel relevance analysis. In: Bebis, G., et al. (eds.) ISVC 2018. LNCS, vol. 11241, pp. 116–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03801-4_11

    Chapter  Google Scholar 

  19. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  20. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  21. Hu, J., Zheng, W., Lai, J., Zhang, J.: Jointly learning heterogeneous features for rgb-d activity recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2186–2200 (2017)

    Article  Google Scholar 

  22. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift, pp. 448–456 (2015)

    Google Scholar 

  23. Ke, Q., An, S., Bennamoun, M., Sohel, F., Boussaid, F.: Skeletonnet: mining deep part features for 3-D action recognition. IEEE Signal Process. Lett. 24(6), 731–735 (2017)

    Article  Google Scholar 

  24. Ke, Q., Bennamoun, M., An, S., Sohel, F., Boussaid, F.: A new representation of skeleton sequences for 3D action recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4570–4579. IEEE (2017)

    Google Scholar 

  25. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  26. Kratz, S., Rohs, M.: The \$3 recognizer: Simple 3D gesture recognition on mobile devices. In: Proceedings of the 15th International Conference on Intelligent User Interfaces (2010)

    Google Scholar 

  27. Kratz, S., Rohs, M.: Protractor3D: a closed-form solution to rotation-invariant 3D gestures. In: Proceedings of the 16th International Conference on Intelligent User Interfaces (2011)

    Google Scholar 

  28. Liu, J., Wang, G., Duan, L., Abdiyeva, K., Kot, A.C.: Skeleton-based human action recognition with global context-aware attention lstm networks. IEEE Trans. Image Process. 27(4), 1586–1599 (2018)

    Article  MathSciNet  Google Scholar 

  29. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal LSTM with trust gates for 3D human action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 816–833. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_50

    Chapter  Google Scholar 

  30. Liu, M., Liu, H., Chen, C.: Enhanced skeleton visualization for view invariant human action recognition. Pattern Recogn. 68(C), 346–362 (2017)

    Article  Google Scholar 

  31. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (2015)

    Google Scholar 

  32. Luvizon, D.C., Picard, D., Tabia, H.: 2D/3D pose estimation and action recognition using multitask deep learning. In: The IEEE Conference on Computer Vision and Pattern Recognition, vol. 2 (2018)

    Google Scholar 

  33. Núñez, J.C., Cabido, R., Pantrigo, J.J., Montemayor, A.S., Vélez, J.F.: Convolutional neural networks and long short-term memory for skeleton-based human activity and hand gesture recognition. Pattern Recogn. 76(C), 80–94 (2018)

    Article  Google Scholar 

  34. Ohn-Bar, E., Trivedi, M.M.: Joint angles similarities and HOG2 for action recognition. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (2013)

    Google Scholar 

  35. Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS-W (2017)

    Google Scholar 

  36. Pittman, C.R., LaViola Jr., J.J.: Multiwave: complex hand gesture recognition using the doppler effect. In: Proceedings of the 43rd Graphics Interface Conference. pp. 97–106 (2017)

    Google Scholar 

  37. Shahroudy, A., Ng, T., Gong, Y., Wang, G.: Deep multimodal feature analysis for action recognition in RGB+D videos. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1045–1058 (2018)

    Article  Google Scholar 

  38. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTURGB+D: a large scale dataset for 3D human activity analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  40. Smedt, Q.D., Wannous, H., Vandeborre, J.: Skeleton-based dynamic hand gesture recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1206–1214 (2016)

    Google Scholar 

  41. Song, S., Lan, C., Xing, J., Zeng, W., Liu, J.: An end-to-end spatio-temporal attention model for human action recognition from skeleton data. AAAI. 1, 4263–4270 (2017)

    Google Scholar 

  42. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  43. Tang, Y., Tian, Y., Lu, J., Li, P., Zhou, J.: Deep progressive reinforcement learning for skeleton-based action recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  44. Taranta, II, E.M., LaViola Jr., J.J.: Penny pincher: a blazing fast, highly accurate \$-family recognizer. In: Proceedings of the 41st Graphics Interface Conference, pp. 195–202 (2015)

    Google Scholar 

  45. Taranta II, E.M., Maghoumi, M., Pittman, C.R., LaViola Jr., J.J.: A rapid prototyping approach to synthetic data generation for improved 2D gesture recognition. In: Proceedings of the 29th Symposium on User Interface Software and Technology, pp. 873–885. ACM (2016)

    Google Scholar 

  46. Taranta II, E.M., Samiei, A., Maghoumi, M., Khaloo, P., Pittman, C.R., LaViola Jr., J.J.: Jackknife: a reliable recognizer with few samples and many modalities. In: Proceedings of the 2017 Conference on Human Factors in Computing Systems, pp. 5850–5861 (2017)

    Google Scholar 

  47. Tas, Y., Koniusz, P.: CNN-based action recognition and supervised domain adaptation on 3D body skeletons via kernel feature maps. In: BMVC (2018)

    Google Scholar 

  48. Tewari, A., Taetz, B., Grandidier, F., Stricker, D.: Two phase classification for early hand gesture recognition in 3D top view data. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 353–363. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_33

    Chapter  Google Scholar 

  49. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3D skeletons as points in a lie group. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 588–595 (2014)

    Google Scholar 

  50. Vrigkas, M., Mastora, E., Nikou, C., Kakadiaris, I.A.: Robust incremental hidden conditional random fields for human action recognition. In: Bebis, G., et al. (eds.) ISVC 2018. LNCS, vol. 11241, pp. 126–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03801-4_12

    Chapter  Google Scholar 

  51. Weng, J., Weng, C., Yuan, J.: Spatio-temporal naive-bayes nearest-neighbor (ST-NBNN) for skeleton-based action recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 445–454 (2017)

    Google Scholar 

  52. Weng, J., Liu, M., Jiang, X., Yuan, J.: Deformable pose traversal convolution for 3D action and gesture recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 142–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_9

    Chapter  Google Scholar 

  53. Xia, L., Chen, C., Aggarwal, J.: View invariant human action recognition using histograms of 3D joints. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–27. IEEE (2012)

    Google Scholar 

  54. Yun, K., Honorio, J., Chattopadhyay, D., Berg, T.L., Samaras, D.: Two-person interaction detection using body-pose features and multiple instance learning. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE (2012)

    Google Scholar 

  55. Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., Zheng, N.: View adaptive recurrent neural networks for high performance human action recognition from skeleton data. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2136–2145 (2017)

    Google Scholar 

  56. Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., Shen, L., Xie, X.: Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3697–3703 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Maghoumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maghoumi, M., LaViola, J.J. (2019). DeepGRU: Deep Gesture Recognition Utility. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11844. Springer, Cham. https://doi.org/10.1007/978-3-030-33720-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33720-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33719-3

  • Online ISBN: 978-3-030-33720-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics