Skip to main content

Children Activity Descriptions from Visual and Textual Associations

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2019)

Abstract

Augmented visual monitoring devices with the ability to describe children’s activities, i.e., whether they are asleep, awake, crawling or climbing, open up possibilities for various applications in promoting safety and well being amongst children. We explore children’s activity description based on an encoder-decoder framework. The correlations between semantic of the image and its textual description are captured using convolution neural network (CNN) and recurrent neural network (RNN). Encoding semantic information as activation patterns of CNN and decoding textual description using probabilistic language model based on RNN can produce relevant descriptions but often suffer from lack of precision. This is because a probabilistic model generates descriptions based on the frequency of words conditioned by contexts. In this work, we explore the effects of adding contexts such as domain specific images and adding pose information to the encoder-decoder models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Youtube standard license for fair use of public content.

  2. 2.

    www.image-net.org/challenges/LSVRC.

References

  1. Phon-Amnuaisuk, S., Murata, K.T., Pavarangkoon, P., Mizuhara, T., Yamamoto, K., Mizuhara, T.: Exploring the applications of faster R-CNN and single-shot multi-box detection in a smart nursery domain. arXiv:1808.08675 (2018)

  2. Kojima, A., Tamura, T., Fukunaga, K.: Natural language description of human activities from video images based on concept hierarchical of actions. Int. J. Comput. Vision 50(2), 171–184 (2002)

    Article  Google Scholar 

  3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  4. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR). CoRR abs/1412.2306 (2015)

    Google Scholar 

  5. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: lessons learned from the 2015 MSCOCO image captioning challenge. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 652–663 (2016)

    Article  Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  8. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  9. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  10. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)

    Article  Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)

    Google Scholar 

  13. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning representations (ICLR) CoRR arXiv: 1409.1556 (2015)

  15. He. K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. CoRR, abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  16. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR, abs/1704.04861 (2015). http://arxiv.org/abs/1512.03385

  17. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE Conference on Computer Vision (ICCV), pp. 1140–1148 CoRR arXiv:1504.08083v2 (2015)

  18. Ye, J., Stevenson, G., Dobson, S.: USMART: an unsupervised semantic mining activity recognition technique. ACM Trans. Interact. Intell. Syst. (TiiS) 4(4), 16 (2015)

    Google Scholar 

  19. Civitarese, G., Bettini, C., Sztyler, T., Riboni, D., Stuckenschmidt, H.: newNECTAR: collaborative active learning for knowledge-based probabilistic activity recognition. Pervasive Mob. Comput. 56(2019), 88–105 (2019)

    Article  Google Scholar 

  20. Vahdatpour, A., Amini, N., Sarrafzadeh, M.: Toward unsupervised activity discovery using multi-dimensional motif detection in time series. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 1261–1266 (2009)

    Google Scholar 

  21. Rashidi, P., Cook, D.J., Holder, L.B., Schmitter-Edgecombe, M.: Discovering activities to recognize and track in a smart environment. IEEE Trans. Knowl. Data Eng. 23(4), 527–539 (2011)

    Article  Google Scholar 

  22. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). http://www.aclweb.org/anthology/D14-1162

Download references

Acknowledgments

This publication is the output of the ASEAN IVO http://www.nict.go.jp/en/asean_ivo/index.html project titled Event Analysis: Applications of computer vision and AI in smart tourism industry and financially supported by NICT (http://www.nict.go.jp/en/index.html). We wish to thank Centre for Innovative Engineering (CIE), Universiti Teknologi Brunei for their partial financial support given to this research. We would also like to thank anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnuk Phon-Amnuaisuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phon-Amnuaisuk, S., Murata, K.T., Pavarangkoon, P., Mizuhara, T., Hadi, S. (2019). Children Activity Descriptions from Visual and Textual Associations. In: Chamchong, R., Wong, K. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2019. Lecture Notes in Computer Science(), vol 11909. Springer, Cham. https://doi.org/10.1007/978-3-030-33709-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33709-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33708-7

  • Online ISBN: 978-3-030-33709-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics