Skip to main content

ESDA: An Energy-Saving Data Analytics Fog Service Platform

  • Conference paper
  • First Online:
Book cover Service-Oriented Computing (ICSOC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11895))

Included in the following conference series:

Abstract

The volume of heterogeneous data collected through a variety of sensors is growing exponentially. With the increasing popularity of providing real-time data analytics services at the edge of the network, the process of harvesting and analysing sensor data is thus an inevitable part of enhancing the service experience for users. In this paper, we propose a fog-empowered data analytics service platform to overcome the frequent sensor data loss issue through a novel deep autoencoder model while keeping the minimum energy usage of the managed sensors at the same time. The platform incorporates several algorithms with the purpose of training the individual local fog model, saving the overall energy consumption, as well as operating the service process. Compared with other state-of-the-art techniques for handling missing sensor data, our platform specialises in finding the underlying relationship among temporal sensor data series and hence provides more accurate results on heterogeneous data types. Owing to the superior inference capability, the platform enables the fog nodes to perform real-time data analytics service and respond to such service request promptly. Furthermore, the effectiveness of the proposed platform is verified through the real-world indoor deployment along with extensive experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldossary, S., Allen, W.: Data security, privacy, availability and integrity in cloud computing: Issues and current solutions. Int. J. Adv. Comput. Sci. Appl. 7(4), 485–498 (2016)

    Google Scholar 

  2. Dias, G.M., Bellalta, B., Oechsner, S.: A survey about prediction-based data reduction in wireless sensor networks. ACM Comput. Surv. 49(3), 58 (2016)

    Article  Google Scholar 

  3. Gao, Z., Cheng, W., Qiu, X., Meng, L.: A missing sensor data estimation algorithm based on temporal and spatial correlation. Int. J. Distrib. Sens. Netw. 11(10), 435391 (2015)

    Google Scholar 

  4. Gupta, C., et al.: ProtoNN: compressed and accurate kNN for resource-scarce devices. In: Proceedings of the 34th International Conference on Machine Learning, pp. 1331–1340. JMLR.org (2017)

    Google Scholar 

  5. Harb, H., Makhoul, A., Laiymani, D., Jaber, A.: A distance-based data aggregation technique for periodic sensor networks. ACM Trans. Sens. Netw. 13(4), 32 (2017)

    Article  Google Scholar 

  6. He, J., Wei, J., Chen, K., Tang, Z., Zhou, Y., Zhang, Y.: Multitier fog computing with large-scale IoT data analytics for smart cities. IEEE Internet of Things J. 5(2), 677–686 (2018)

    Article  Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Jaques, N., Taylor, S., Sano, A., Picard, R.: Multimodal autoencoder: a deep learning approach to filling in missing sensor data and enabling better mood prediction. In: Proceedings of the 7th International Conference on Affective Computing and Intelligent Interaction, pp. 202–208. IEEE (2017)

    Google Scholar 

  9. Kumar, A., Goyal, S., Varma, M.: Resource-efficient machine learning in 2 KB RAM for the Internet of Things. In: Proceedings of the 34th International Conference on Machine Learning, pp. 1935–1944. JMLR.org (2017)

    Google Scholar 

  10. Li, H., Ota, K., Dong, M.: Learning IoT in edge: deep learning for the Internet of Things with edge computing. IEEE Netw. 32(1), 96–101 (2018)

    Article  Google Scholar 

  11. Luo, X., Zhang, D., Yang, L.T., Liu, J., Chang, X., Ning, H.: A Kernel machine-based secure data sensing and fusion scheme in wireless sensor networks for the cyber-physical systems. Future Gener. Comput. Syst. 61, 85–96 (2016)

    Article  Google Scholar 

  12. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  13. Raza, U., Camerra, A., Murphy, A.L., Palpanas, T., Picco, G.P.: Practical data prediction for real-world wireless sensor networks. IEEE Trans. Knowl. Data Eng. 27(8), 2231–2244 (2015)

    Article  Google Scholar 

  14. Shen, Z., Zhang, T., Jin, J., Yokota, K., Tagami, A., Higashino, T.: ICCF: an information-centric collaborative fog platform for building energy management systems. IEEE Access 7, 40402–40415 (2019)

    Article  Google Scholar 

  15. Shen, Z., Yokota, K., Tagami, A., Higashino, T.: Development of energy-efficient sensor networks by minimizing sensors numbers with a machine learning model. In: Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 741–746. IEEE (2018)

    Google Scholar 

  16. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  17. Tortonesi, M., Govoni, M., Morelli, A., Riberto, G., Stefanelli, C., Suri, N.: Taming the IoT data deluge: an innovative information-centric service model for fog computing applications. Future Gener. Comput. Syst. 93, 888–902 (2019)

    Article  Google Scholar 

  18. Trihinas, D., Pallis, G., Dikaiakos, M.D.: ADMin: adaptive monitoring dissemination for the Internet of Things. In: Proceedings of the IEEE Conference on Computer Communications, pp. 1–9. IEEE (2017)

    Google Scholar 

  19. Zhang, T., Jin, J., Yang, Y.: RA-FSD: a rate-adaptive fog service delivery platform. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 246–254. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9_16

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partly supported by Australian Government Research Training Program Scholarship, Australian Research Council Discovery Project Grant DP180100212 and NICT (Contract No. 19103), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiehua Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, T., Shen, Z., Jin, J., Tagami, A., Zheng, X., Yang, Y. (2019). ESDA: An Energy-Saving Data Analytics Fog Service Platform. In: Yangui, S., Bouassida Rodriguez, I., Drira, K., Tari, Z. (eds) Service-Oriented Computing. ICSOC 2019. Lecture Notes in Computer Science(), vol 11895. Springer, Cham. https://doi.org/10.1007/978-3-030-33702-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33702-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33701-8

  • Online ISBN: 978-3-030-33702-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics