Skip to main content

Satellite Dual-Polarization Radar Imagery Superresolution Under Physical Constraints

  • Conference paper
  • First Online:
Advances in Intelligent Systems and Computing IV (CSIT 2019)

Abstract

A novel physically justified method for spatial resolution enhancement of satellite dual-polarization synthetic aperture radar data is proposed. The method starts from the conversion of the specific land surface radar backscattering into the land surface dielectric permittivity in each polarization band separately. Said conversion is founded on a well-known integral equation model of synthetic aperture radar (SAR) backscattering. Transition from raw radar data to dielectric permittivity forms a common unified image field in each polarization band. Due to the SAR platform’s own movement, these fields are affected by some subpixel shift to each other. So, the opportunity to apply the superresolution technique over all permittivity fields at once is enabled with considering ones’ subpixel shift. Dual-image iterative superresolution based on Gaussian regularization was used. A standalone software module for statistical estimation of inter-images subpixel shift was developed earlier and applied in current research. A noticeable spatial resolution enhancement of the land surface dielectric permittivity field was achieved. This was demonstrated and quantified for actual dual-polarization radar images from the Sentinel-1 European SAR satellite system over two test sites in Ukraine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zatyagalova, V.V., Ivanov, A.Y., Golubov, B.N.: Application of ENVISAT SAR imagery for mapping and estimation of natural oil seeps in the south Caspian sea. In: Proceedings of the ‘ENVISAT Symposium 2007’, Montreux, pp. 1–6. ESA (2007)

    Google Scholar 

  2. Kusky, T.M., Ramadan, T.M.: Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: an integrated field, Landsat TM, and SIR-C/X SAR approach. J. Afr. Earth Sci. 35, 107–121 (2002)

    Article  Google Scholar 

  3. Ramadan, T.M.: Use of ERS-2 SAR and Landsat TM images for geological mapping and mineral exploration of Sol Hamid Area, South Eastern Desert, Egypt. Egypt. J. Remote Sens. Space Sci. VI, 13–24 (2003)

    Google Scholar 

  4. Amitrano, D., Di Martino, G., Iodice, A., Mitidieri, F., Papa, M.N., Riccio, D., Ruello, G.: Sentinel-1 for monitoring reservoirs: a performance analysis. Remote Sens. 6(11), 10676–10693 (2014)

    Article  Google Scholar 

  5. Gao, Q., Zribi, M., Escorihuela, M.J., Baghdadi, N.: Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors 17(9), 21 (2017). a.1966

    Google Scholar 

  6. Stankevich, S.A., Kozlova, A.A., Piestova, I.O., Lubskyi, M.S.: Leaf area index estimation of forest using Sentinel-1 C-band SAR data. In: Proceedings of 5th Microwaves, Radar and Remote Sensing Symposium (MRRS 2017), Kiev, pp. 253–257. IEEE (2017)

    Google Scholar 

  7. Ulaby, F., Long, D.G.: Microwave Radar and Radiometric Remote Sensing. University of Michigan Press, Ann Arbor (2013)

    Google Scholar 

  8. Geudtner, D., Torres, R., Snoeij, P., Ostergaard, A., Navas-Traver, I., Rommen, B., Brown, M.: Sentinel-1 system overview and performance. In: Proceedings of ‘ESA Living Planet Symposium 2013’, Edinburgh, 4 p. ESA (2013)

    Google Scholar 

  9. Stankevich, S.A., Shklyar, S.V., Podorvan, V.N., Lubskyi, N.S.: Thermal infrared imagery informativity enhancement using sub-pixel co-registration. In: International Conference on Information and Digital Technologies (IDT), Rzeszów, pp. 245–248. IEEE (2016)

    Google Scholar 

  10. Piestova, I., Lubskyi, M., Svideniuk, M., Golubov, S., Sedlacek, P.: Satellite imagery resolution enhancement for urban area thermal micromapping. Cent. Eur. Res. J. 4(1), 35–39 (2018)

    Google Scholar 

  11. Zaitseva, E., Piestova, I., Rabcan, J., Rusnak, P.: Multiple-valued and fuzzy logics application to remote sensing data analysis. In: 26th Telecommunications Forum (TELFOR), Belgrade, pp. 1–4. IEEE (2018)

    Google Scholar 

  12. Stankevich, S.A., Lubskyi, M.S., Mosov, S.P.: Natural color aerial imagery superresolution with bands radiometric conversion. In: Proceedings of 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET 2018), Kiev, pp. 99–102. IEEE (2018)

    Google Scholar 

  13. Brodu, N.: Super-resolving multiresolution images with band-independent geometry of multispectral pixels. IEEE Trans. Geosci. Remote Sens. 55(8), 4610–4617 (2017)

    Article  Google Scholar 

  14. Zhu, H., Tang, X., Xie, J., Song, W., Mo, F., Gao, X.: Spatio-temporal super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement. Sensors 18(2), 20 (2018). a. 498

    Google Scholar 

  15. Zhu, L., Suomalainen, J., Liu, J., Hyyppä, J., Kaartinen, H., Haggren, H.: A review: remote sensing sensors. In: Rustamov, R.B., Hasanova, S., Zeynalova, M.H. (eds.) Multi-purposeful Application of Geospatial Data, pp. 19–42. IntechOpen, London (2018)

    Google Scholar 

  16. Karybali, I.G., Psarakis, E.Z., Berberidis, K., Evangelidis, G.D.: An efficient spatial domain technique for subpixel image registration. Signal Process. Image Commun. 23(9), 711–724 (2008)

    Article  Google Scholar 

  17. Ben-Ezra, M., Zomet, A., Nayar, S.K.: Video super-resolution using controlled subpixel detector shifts. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 977–987 (2005)

    Article  Google Scholar 

  18. Belenok, V.Yu., Burachek, V.G., Zatserkovny, V.I., Popov, M.A., Stankevich, S.A.: Subpixel image acquisition for detailed aerospace imaging. In: Proceedings of the 8th International Conference on Digital Technologies (DT 2011), pp. 190–193. University of Žilina, Žilina (2011)

    Google Scholar 

  19. Stankevich, S.A., Shklyar, S.V., Tiagur, V.M.: Subpixel resolution satellite imaging technique. In: Proceedings of the 9th International Conference on Digital Technologies (DT 2013), pp. 81–84. University of Žilina, Žilina (2013)

    Google Scholar 

  20. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  21. Young, S.S., Driggers, R.G., Jacobs, E.L.: Signal Processing and Performance Analysis for Imaging Systems. Artech House, Norwood (2008)

    MATH  Google Scholar 

  22. Stone, H.S., Orchard, M.T., Chang, E.-C., Martucci, S.A.: A fast direct Fourier-based algorithm for subpixel registration of images. IEEE Trans. Geosci. Remote Sens. 39(10), 2235–2243 (2001)

    Article  Google Scholar 

  23. Vandewalle, P., Baboulaz, L., Dragotti, P.L., Vetterli, M.: Subspace-based methods for image registration and super-resolution. In: Proceedings of the 15th International Conference on Image Processing (ICIP 2008), San Diego, pp. 645–648. IEEE (2008)

    Google Scholar 

  24. Shekarforoush, H., Berthod, M., Zerubia, J.: Subpixel image registration by estimating the polyphase decomposition of cross-power spectrum. In: Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1996), San Francisco, pp. 532–537. IEEE (1996)

    Google Scholar 

  25. Gerchberg, R.: Super-resolution through error energy reduction. Acta Opt. 21(9), 709–720 (1974)

    Article  Google Scholar 

  26. Papoulis, A.: A new algorithm in spectral analysis and band-limited extrapolation. IEEE Trans. Circ. Syst. 22(9), 735–742 (1979)

    Article  MathSciNet  Google Scholar 

  27. Stark, H., Oskoui, P.: High-resolution image recovery from image-plane arrays using convex projections. J. Opt. Soc. Am. 7(11), 1715–1726 (1989)

    Article  Google Scholar 

  28. Ayers, G.R., Dainty, J.C.: Iterative blind deconvolution method and its applications. Opt. Lett. 13(7), 547–549 (1988)

    Article  Google Scholar 

  29. Popov, M.A., Stankevich, S.A.: About restoration of the scanning images received onboard a Sich-1M space vehicle by inverse filtering method. In: Proceedings of the 31st International Symposium on Remote Sensing of Environment, Saint Petersburg, pp. 488–490. ISPRS (2005)

    Google Scholar 

  30. Nguyen, N., Milanfar, P.: A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution). Circ. Syst. Signal Process. 18(4), 321–338 (2000)

    Article  MATH  Google Scholar 

  31. Lyalko, V.I., Popov, M.A., Stankevich, S.A., Shklyar, S.V., Podorvan, V.N., Likholit, N.I., Tyagur, V.M., Dobrovolska, C.V.: Prototype of satellite infrared spectroradiometer with superresolution. J. Inf. Control Manag. Syst. 12(2), 153–164 (2014)

    Google Scholar 

  32. Ulaby, F.T., Moore, R.K., Fung, A.K.: Microwave Remote Sensing: Active and Passive, vol. II. Artech House, Dedham (1982)

    Google Scholar 

  33. Ku, C.-S., Chen, K.-S., Chang, P.-C., Chang, Y.-L.: Imaging simulation for synthetic aperture radar: a full-wave approach. Remote Sens. 10(9), 16 (2018). a. 1404

    Article  Google Scholar 

  34. Wang, H.: Soil moisture retrieval from microwave remote sensing observations. In: Civeira, G. (ed.) Soil Moisture, pp. 29–54. IntechOpen, London (2019)

    Google Scholar 

  35. Freeman, A.: Radiometric calibration of SAR image data. ISPRS Arch. XXIX(B1), 212–222 (1992)

    Google Scholar 

  36. Kang, W., Yu, S., Ko, S., Paik, J.: Multisensor superresolution using directionally adaptive regularization for UAV images. In: Toro, F.G., Tsourdos, A. (eds.) UAV Sensors for Environmental Monitoring, pp. 272–294. MDPI, Basel (2018)

    Google Scholar 

  37. Soares, J.V., Rennó, C.D.: Soil moisture retrieval from active microwave remote sensing. In: Proceedings of the First Latino-American Seminar on Radar Remote Sensing – Image Processing Techniques, Buenos Aires, pp. 192–203. ESA (1997)

    Google Scholar 

  38. Stankevich, S.A., Shklyar, S.V., Lysenko, A.R.: Software module for estimating subpixel shift of images acquired from quadcopter. Ukr. J. Remote. Sens. 17, 10–13 (2018)

    Article  Google Scholar 

  39. Kennedy, R.E., Cohen, W.B.: Automated designation of tie-points for image-to-image coregistration. Int. J. Remote Sens. 24(17), 3467–3490 (2003)

    Article  Google Scholar 

  40. Popov, M.O., Stankevich, S.A., Shklyar, S.V.: An algorithm for resolution enhancement of subpixel displaced images. Math. Mach. Syst. 1, 29–36 (2015)

    Google Scholar 

  41. Liu, H.Y., Zhang, Y.S., Ji, S.: Study on the methods of super-resolution image reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII(B2), 461–466 (2008)

    Article  Google Scholar 

  42. Chen, C.H.: Signal and Image Processing for Remote Sensing. CRC Press, Boca Raton (2012)

    Book  MATH  Google Scholar 

  43. Stankevich, S., Piestova, I., Shklyar, S., Lysenko, A.: Satellite dual-polarization radar imagery superresolution under physical constraints. In: Proceedings of the International Scientific Conference “Computer Sciences and Information Technologies” (CSIT 2019), vol. 3, pp. 228–231 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Stankevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stankevich, S., Piestova, I., Shklyar, S., Lysenko, A. (2020). Satellite Dual-Polarization Radar Imagery Superresolution Under Physical Constraints. In: Shakhovska, N., Medykovskyy, M.O. (eds) Advances in Intelligent Systems and Computing IV. CSIT 2019. Advances in Intelligent Systems and Computing, vol 1080. Springer, Cham. https://doi.org/10.1007/978-3-030-33695-0_30

Download citation

Publish with us

Policies and ethics