Skip to main content

Searching for Pareto-Optimal Solutions

  • Conference paper
  • First Online:
Advances in Intelligent Systems and Computing IV (CSIT 2019)

Abstract

The problem of narrowing the Pareto set is considered. The existing approaches aimed at solving the problem of finding a set of Pareto optimal solutions has been analyzed. One approach for solving multi-objective problems based on complex using methods for the construction of the Pareto optimal set and evidence theory has been proposed in this paper. The proposed technique allows to evaluate the obtained set of non-dominated alternatives by methods of the evidence theory to find the best (optimal) solution. The proposed approach allows us to obtain a more formalized procedure for narrowing the Pareto set to obtaining a single optimal solution (a single-element Pareto set). The use of the mathematical apparatus of the evidence theory makes it possible to model uncertainty in expert or decision makers judgments (the strict requirement of the “unambiguous” preference of one alternative over the other is removed). Using the proportional conflict redistribution rules for aggregating group expert assessments makes it possible to process expert evidence generated under conflicting, contradiction expert information. Numerical examples of the proposed methodology for integrated application of evidence theory and methods for Pareto set construction to find optimal solutions are given. The results obtained make it possible to improve the quality and effectiveness of finding optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nogin, V.D.: Priniatie reshenii v mnogokriterialnoi srede: kolichestvennyi podkhod, 2nd edn. Fizmatlit, Moscow (2005). (in Russian)

    Google Scholar 

  2. Bogdanova, A.V., Nogin, V.D.: Reduction of the Pareto set based on some compound information on the relative importance of criteria. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, vol. 2, pp. 1–16 (2007). (in Russian)

    Google Scholar 

  3. Nogin, V.D., Volkova, N.A.: Evolution of the Edgeworth-Pareto principle. Tavricheskiĭ Vestnik Informatiki i Matematiki 1, 21–33 (2006). (in Russian)

    MATH  Google Scholar 

  4. Zakharov, A.O.: Suzhenie mnozhestva Pareto na osnove vzaimozavisimoi informatsii zamknutogo tipa. Iskusstvennyi Intellect i Priniatie Reshenii 1, 67–81 (2011). (in Russian)

    Google Scholar 

  5. Nogin, V.D.: Problema suzheniia mnozhestva Pareto: podkhody k resheniiu. Iskusstvennyi Intellect i Priniatie Reshenii 1, 98–112 (2008). (in Russian)

    Google Scholar 

  6. Nogin, V.D.: Algoritm suzheniia mnozhestva Pareto na osnove proizvolnogo konechnogo nabora “kvantov” informatsii. Iskusstvennyi Intellect i Priniatie Reshenii 1, 63–69 (2013). (in Russian)

    Google Scholar 

  7. Nogin, V.D.: Suzhenie mnozhestva Pareto na osnove nechetkoi informatsii. Int. J. Inf. Technol. Knowl. 6(2), 157–168 (2012). (in Russian)

    Google Scholar 

  8. Podinovskii, V.V.: Vvedenie v teoriiu vazhnosti kriteriev v mnogokriterialnykh zadachakh priniatiia reshenii. Fizmatlit, Moscow (2007). (in Russian)

    Google Scholar 

  9. Shafer, G.A.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  10. Beynon, M.J., Curry, B., Morgan, P.: The Dempster-Shafer theory of evidence: an alternative approach to multicriteria decision modeling. Omega 28(1), 37–50 (2000)

    Article  Google Scholar 

  11. Dempster, A.P.: A generalization of Bayesian inference. J. Roy. Stat. Soc. B(30), 205–247 (1968)

    MathSciNet  MATH  Google Scholar 

  12. Nogin, V.D.: Priniatie reshenii pri mnogikh kriteriiakh. IUTAS, SPb (2007). (in Russian)

    Google Scholar 

  13. Sentz, K., Ferson, S.: Combination of evidence in Dempster–Shafer theory. Sandia National Laboratories, Albuquerque, New Mexico (2002)

    Google Scholar 

  14. Shved, A., Davydenko, Ye.: The analysis of uncertainty measures with various types of evidence. In: 1st International Conference on Data Stream Mining & Processing, Lviv, Ukraine, pp. 61–64. IEEE (2016). https://doi.org/10.1109/dsmp.2016.7583508

  15. Uzga-Rebrovs, O.: Upravlenie neopredelennostiami, vol. 3. Izdevnieciba, Rezekne (2010). (in Russian)

    Google Scholar 

  16. Zadeh, L.A.: Review of Shafer’s “A mathematical theory of evidence”. AI Mag. 5(3), 81–83 (1984)

    Google Scholar 

  17. Yager, R.R.: On the Dempster-Shafer framework and new combination rules. Inf. Sci. 41(2), 93–137 (1987)

    Article  MathSciNet  Google Scholar 

  18. Inagaki, T.: Interdepence between safety-control policy and multiple-sensor schemes via Dempster-Shafer theory. Trans. Reliab. 40(2), 182–188 (1991)

    Article  MathSciNet  Google Scholar 

  19. Zhang, L.: Representation, independence and combination of evidence in the Dempster-Shafer theory of evidence. In: Yager, R.R., Kacprzyk, J., Fedrizzi, M. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 51–69. Wiley, New York (1994)

    Google Scholar 

  20. Smets, Ph.: The combination of evidence in the transferable belief model. Pattern Anal. Mach. Intell. 12, 447–458 (1990)

    Google Scholar 

  21. Smarandache, F., Dezert, J.: Advances and Applications of DSmT for Information Fusion, vol. 1. American Research Press, Rehoboth (2004)

    MATH  Google Scholar 

  22. Smarandache, F., Dezert, J.: Advances and Applications of DSmT for Information Fusion, vol. 2. American Research Press, Rehoboth (2006)

    MATH  Google Scholar 

  23. Kovalenko, I., Davydenko, Ye., Shved, A.: Development of the procedure for integrated application of scenario prediction methods. Eastern-Eur. J. Enterp. Technol. 2/4(98), 31–37 (2019). https://doi.org/10.15587/1729-4061.2019.163871

  24. Beynon, M.J.: DS/AHP method: a mathematical analysis, including an understanding of uncertainty. Eur. J. Oper. Res. 140, 148–164 (2002)

    Article  Google Scholar 

Download references

Acknowledgment

This research was partially supported by the state research project “Development of information and communication decision support technologies for strategic decision-making with multiple criteria and uncertainty for military-civilian use” (research project no. 0117U007144, financed by the Government of Ukraine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevhen Davydenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kovalenko, I., Davydenko, Y., Shved, A. (2020). Searching for Pareto-Optimal Solutions. In: Shakhovska, N., Medykovskyy, M.O. (eds) Advances in Intelligent Systems and Computing IV. CSIT 2019. Advances in Intelligent Systems and Computing, vol 1080. Springer, Cham. https://doi.org/10.1007/978-3-030-33695-0_10

Download citation

Publish with us

Policies and ethics