Skip to main content

Introduction

  • Chapter
  • First Online:
Spontaneous Combustion of Coal
  • 298 Accesses

Abstract

Coal, as a fuel, has the potential to start burning itself without being artificially ignited when certain conditions are present. Spontaneous combustion of coal has posed a serious safety threat in the coal industry and other related industries. Hazards, accidents, and impacts of this issue as current global scenarios are introduced. In the USA 97 underground coal fires were caused by coal self-heating from 1952 to 1999.

A total of 125 incidents resulted from coal self-heating occurred in the New South Wales state of Australia during the period from 1960 to 1991. More recently, on 13 May 2014, an explosion at Eynez coal mine in Soma, Manisa, Turkey, caused 301 people killed in the worst mine disaster in Turkey’s history. The potential causal factors contributing to self-heating in terms of intrinsic (chemical structure, coal composition parameters, pyrite porosity, and coal rank) and extrinsic factors (humidity, particle size, aging effect, etc.) of coal are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AkgĂĽn, F., & Arisoy, A. (1994). Effect of particle size on the spontaneous heating of a coal stockpile. Combustion and Flame, 99(1), 137–146.

    Article  Google Scholar 

  • Arisoy, A., & AkgĂĽn, F. (1994). Modelling of spontaneous combustion of coal with moisture content included. Fuel, 73(2), 281–286.

    Article  Google Scholar 

  • Barr, W. M. (1900). A catechism on the combustion of coal and the prevention of smoke. New York: NW Henley & Company.

    Google Scholar 

  • Baset, Z. H., Pancirov, R. J., & Ashe, T. R. (1980). Organic compounds in coal: Structure and origins. Physics and Chemistry of the Earth, 12, 619–630.

    Article  Google Scholar 

  • Baughman, G. L. (1978). Synthetic fuels data handbook, Cameron Engineers, Inc., Denver, CO, 118.

    Google Scholar 

  • Beamish, B., (2005). Comparison of the R70 self-heating rate of New Zealand and Australian coals to Suggate rank parameter. International Journal of Coal Geology, 64(1–2), 139–144.

    Article  Google Scholar 

  • Beamish, B. & Beamish, R. (2012). Testing and sampling requirements for input to spontaneous combustion risk assessment. Australian Mine Ventilation Conference 2011, Sydney, Australia, 5–6 September 2011. Carlton, Vic., Australia: Australasian Institute of Mining and Metallurgy.

    Google Scholar 

  • Beamish, B. B., & Blazak, D. G. (2005). Relationship between ash content and R70 self-heating rate of Callide Coal. International Journal of Coal Geology, 64(1), 126–132.

    Article  Google Scholar 

  • Beamish, B. B., & Hamilton, G. R. (2005). Effect of moisture content on the R70 self-heating rate of Callide coal. International Journal of Coal Geology, 64(1–2), 133–138.

    Article  Google Scholar 

  • Beamish, B. B., Barakat, M. A., & St George, J. D. (2000). Adiabatic testing procedures for determining the self-heating propensity of coal and sample ageing effects. Thermochimica Acta, 362(1–2), 79–87.

    Article  Google Scholar 

  • Beamish, B., Lin, Z., & Beamish, R. (2012). Investigating the influence of reactive pyrite on coal self-heating. Coal Operators’ Conference, The University of Wollongong (pp. 294–299).

    Google Scholar 

  • Berkowitz, N. (1951). Heats of wetting and the spotaneous ignition of coal. Fuel, 30, 94–96.

    Google Scholar 

  • Bhattacharyya, K. (1971). The role of sorption of water vapour in the spontaneous heating of coal. Fuel, 50(4), 367–380.

    Article  Google Scholar 

  • Bodzek, D., & Marzec, A. (1981). Molecular components of coal and coal structure. Fuel, 60(1), 47–51.

    Article  Google Scholar 

  • Carras, J. N., & Young, B. C. (1994). Self-heating of coal and related materials: Models, application and test methods. Progress in Energy and Combustion Science, 20(1), 1–15.

    Article  Google Scholar 

  • Cathles, L., & Apps, J. (1975). A model of the dump leaching process that incorporates oxygen balance, heat balance, and air convection. Metallurgical Transactions B, 6(4), 617.

    Article  Google Scholar 

  • Chakravorty, R., & Kolada, R. (1988). Prevention and control of spontaneous combustion in coal mines. Mining Engineering, 40, 952–956.

    Google Scholar 

  • Chen, X. D. (1992). On the mathematical modeling of the transient process of spontaneous heating in a moist coal stockpile. Combustion & Flame, 90(2), 114–120.

    Article  Google Scholar 

  • Chen, X. D., & Stott, J. B. (1993). The effect of moisture content on the oxidation rate of coal during near-equilibrium drying and wetting at 50 °C. Fuel, 72(6), 787–792.

    Article  Google Scholar 

  • Chen, Y., Mastalerz, M., & Schimmelmann, A. (2012). Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. International Journal of Coal Geology, 104, 22–33.

    Article  Google Scholar 

  • Clark, C. S. (1966). Oxidation of coal mine pyrite. Journal of the Sanitary Engineering Division, 92(2), 127–146.

    Google Scholar 

  • Clemens, A. H., & Matheson, T. W. (1996). The role of moisture in the self-heating of low-rank coals. Fuel, 75(7), 891–895.

    Article  Google Scholar 

  • Cliff, D. (2009). Spontaneous combustion management-linking experiment with reality. Coal Operators’ Conference, University of Wollongong (pp. 281–286).

    Google Scholar 

  • Cliff, D., Rowlands, D., & Sleeman, J. (1996). Spontaneous combustion in Australian coal mines. Redbank: SIMTARS.

    Google Scholar 

  • Das, B., & Hucka, V. (1986). Control of spontaneous combustion of coal through an analysis of its mechanism and the affecting factors. Society of Mining Engineers of AIME, Presented at the SME annual meeting, New Orleans, LA (pp. 86–62).

    Google Scholar 

  • De Rosa, M. I. (2004). Analysis of mine fires for all US underground and surface coal mining categories: 1990–1999. Information Circular-United States, NIOSH.

    Google Scholar 

  • DĂĽzgĂĽn, H. S., & Leveson, N. (2018). Analysis of soma mine disaster using causal analysis based on systems theory (CAST). Safety Science, 110, 37–57.

    Article  Google Scholar 

  • Edmunds, W. E. (2002). Coal in Pennsylvania. Harrisburg: Commonwealth of Pennsylvania, Department of Conservation and Natural Resources.

    Google Scholar 

  • Ejlali, A., Mee, D. J., Hooman, K., & Beamish, B. B. (2011). Numerical modelling of the self-heating process of a wet porous medium. International Journal of Heat & Mass Transfer, 54(25), 5200–5206.

    Article  Google Scholar 

  • Evangelou, V. (2018). Pyrite oxidation and its control. Boca Raton: CRC press.

    Book  Google Scholar 

  • Falcon, R., & Ham, A. (1988). The characteristics of South African coals. Journal of the Southern African Institute of Mining and Metallurgy, 88(5), 145–161.

    Google Scholar 

  • Fuchs, W., & Sandhoff, A. G. (1942). Theory of coal pyrolysis. Industrial & Engineering Chemistry, 34(5), 567–571.

    Article  Google Scholar 

  • Gambrel, D. (2010). Safety at sea and the shipper’s duty to warn. Coal Age, 115(8), 18.

    Google Scholar 

  • Gan, H., Nandi, S., & Walker, P., Jr. (1972). Nature of the porosity in American coals. Fuel, 51(4), 272–277.

    Article  Google Scholar 

  • Garcia, P., Hall, P. J., & Mondragon, F. (1999). The use of differential scanning calorimetry to identify coals susceptible to spontaneous combustion. Thermochimica Acta, 336(1), 41–46.

    Article  Google Scholar 

  • Given, P. H., et al. (1975). Dependence of coal liquefaction behaviour on coal characteristics. 2. Role of petrographic composition. Fuel, 54(1), 40–49.

    Article  Google Scholar 

  • Gong, R., Burnell, J., & Wake, G. (1999). Modelling spontaneous combustion in wet lignite. Combustion Theory and Modelling, 3(2), 215–232.

    Article  Google Scholar 

  • Gouws, M., & Knoetze, T. (1995). Coal self-heating and explosibility. Journal of the Southern African Institute of Mining and Metallurgy, 95(1), 37–43.

    Google Scholar 

  • Gray, B. F., Sexton, M. J., Halliburton, B., & Macaskill, C. (2002). Wetting-induced ignition in cellulosic materials. Fire Safety Journal, 37(5), 465–479.

    Article  Google Scholar 

  • Grubb, J. W. (2008). Preventative measures for spontaneous combustion in underground coal mines. Colorado School of Mines. Arthur Lakes Library, Colorado, US.

    Google Scholar 

  • Grubba, J. W. et al. (2015). Managing the risk of spontaneous combustion in underground coal mines. Proceedings of 15th North American Mine Ventilation Symposium, Virginia Tech, Virginia (pp. 1–10).

    Google Scholar 

  • Guney, M. (1968). Oxidation and spontaneous combustion of coal: Review of individual factors. Colliery Guardian, 216(105–110), 137–143.

    Google Scholar 

  • Guney, M. (1971). An adiabatic study of the influence of moisture on the spontaneous heating of coal. CIM Bulletin, 64(3), 138–146.

    Google Scholar 

  • Haenel, M. W. (1992). Recent progress in coal structure research. Fuel, 71(11), 1211–1223.

    Article  Google Scholar 

  • Hossfeld, R. J., & Hatt, R. (2005). PRB coal degradation: Causes and cures. PRB Coal Users Group, http://www.prbcoals.com/pdf/paper_archives/56538.pdf.

  • KadioÄźlu, Y., & Varamaz, M. (2003). The effect of moisture content and air-drying on spontaneous combustion characteristics of two Turkish lignitesa. Fuel, 82(13), 1685–1693.

    Article  Google Scholar 

  • KaymakçI, E., & Didari, V. (2001). Relations between coal properties and spontaneous combustion parameters. Turkish Journal of Engineering and Environmental Sciences, 26(1), 59–64.

    Google Scholar 

  • Kidena, K., Murata, S., & Nomura, M. (2008). A newly proposed view on coal molecular structure integrating two concepts: Two phase and uniphase models. Fuel Processing Technology, 89(4), 424–433.

    Article  Google Scholar 

  • Kim, A. G. (1977). Laboratory studies on spontaneous heating of coal: A summary of information in the literature. Washington, DC: Dept. of the Interior, Bureau of Mines.

    Google Scholar 

  • Krichko, A. A., & Gagarin, S. G. (1990). New ideas of coal organic matter chemical structure and mechanism of hydrogenation processes. Fuel, 69(7), 885–891.

    Article  Google Scholar 

  • Krishnaswamy, S., Bhat, S., Gunn, R. D., & Agarwal, P. K. (1996). Low-temperature oxidation of coal. 1. A single-particle reaction-diffusion model. Fuel, 75(3), 333–343.

    Article  Google Scholar 

  • Kuchta, J., Rowe, V., & Burgess, D. S. (1980). Spontaneous combustion susceptibility of US coals. Washington, DC: US Dept. of the Interior, Bureau of Mines.

    Google Scholar 

  • Küçük, A., KadıoÄźlu, Y., & GĂĽlaboÄźlu, M. Ĺž. (2003). A study of spontaneous combustion characteristics of a turkish lignite: Particle size, moisture of coal, humidity of air. Combustion and Flame, 133(3), 255–261.

    Article  Google Scholar 

  • Levenspiel, O. (1999). Chemical reaction engineering. Industrial & Engineering Chemistry Research, 38(11), 4140–4143.

    Article  Google Scholar 

  • Li, S. H., & Parr, S. W. (1926). The oxidation of pyrites as a factor in the spontaneous combustion of coal. Industrial & Engineering Chemistry, 18(12), 1299–1304.

    Article  Google Scholar 

  • Litton, C. D., & Page, S. J. (1994). Coal proximate analyses correlations with airborne respirable dust and spontaneous combustion temperature. Fuel, 73(8), 1369–1370.

    Google Scholar 

  • Lorenz, W. C., & Stephan, R. W. (1967). Factors that affect the formation of coal mine drainage pollution in Appalachia. Pittsburgh: U.S. Dept. of the Interior, Bureau of Mines, Area I Mineral Resource Office.

    Google Scholar 

  • Lu, L., Devasahayam, S., & Sahajwalla, V. (2013). Chapter 14 – Evaluation of coal for metallurgical applications. In D. Osborne (Ed.), The coal handbook: Towards cleaner production (pp. 352–386). Oxford: Woodhead Publishing.

    Chapter  Google Scholar 

  • Malumbazo, N. (2011). Chemical and physical structural studies on two inertinite-rich lump coals. Ph.D. dissertation. The University of the Witwatersrand, Johannesburg, South Africa.

    Google Scholar 

  • Marzec, A. (1986). Macromolecular and molecular model of coal structure. Fuel Processing Technology, 14, 39–46.

    Article  Google Scholar 

  • Marzec, A., & Schulten, H.-R. (1991). Chemical nature of species associated with mobile protons in coals. Coal Science II. ACS symposium series. American Chemical Society (pp. 61–71).

    Google Scholar 

  • Misra, B. K., & Singh, B. D. (1994). Susceptibility to spontaneous combustion of Indian coals and lignites: An organic petrographic autopsy. International Journal of Coal Geology, 25(3), 265–286.

    Article  Google Scholar 

  • Nelson, M. I., & Chen, X. D. (2007). Survey of experimental work on the self-heating and spontaneous combustion of coal. Reviews in Engineering Geology, 18(1), 1831–1883.

    Google Scholar 

  • Nordon, P., & Bainbridge, N. (1983). Heat of wetting of a bituminous coal. Fuel, 62(5), 619–621.

    Article  Google Scholar 

  • Nugroho, Y. S., Iman, R. R. R., & Saleh, M. (2008). Effect of humidity on self-heating of a sub-bituminous coal under adiabatic conditions. Fire Safety Science, 9, 179–189.

    Article  Google Scholar 

  • Ogunsola, O. I., & Mikula, R. J. (1992). Effect of thermal upgrading on spontaneous combustion characteristics of western Canadian low rank coals. Fuel, 71(1), 3–8.

    Article  Google Scholar 

  • Onifade, M., & Genc, B. (2018). Modelling spontaneous combustion liability of carbonaceous materials. International Journal of Coal Science & Technology, 5(2), 191–212.

    Article  Google Scholar 

  • Palmer, A., Cheng, M., Goulet, J.-C., & Furimsky, E. (1990). Relation between particle size and properties of some bituminous coals. Fuel, 69(2), 183–188.

    Article  Google Scholar 

  • Parr, S. W., & Kressman, F. W. (1910). The spontaneous combustion of coal, with special reference to bituminous coals of the illinois type. University of Illinois Bulletin, No. 46, Urbana, Illinois, US.

    Google Scholar 

  • Phillips, H., Uludag, S., & Chabedi, K. (2011). Prevention and control of spontaneous combustion, Best practice guidelines for surface coal mines in South Africa Coaltech research association annual colloquium.

    Google Scholar 

  • Pomroy, W. H., & Carigiet, A. M. (1995). Analysis of underground coal mine fire incidents in the United States from 1978 through 1992. Washington, DC: Information Circular-United States, Bureau of Mines.

    Google Scholar 

  • Ren, T., Edwards, J., & Clarke, D. (1999). Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion. Fuel, 78(14), 1611–1620.

    Article  Google Scholar 

  • Rosema, A., Guan, H., & Veld, H. (2001). Simulation of spontaneous combustion, to study the causes of coal fires in the Rujigou Basin. Fuel, 80(1), 7–16.

    Article  Google Scholar 

  • Shinn, J. H. (1984). From coal to single-stage and two-stage products: A reactive model of coal structure. Fuel, 63(9), 1187–1196.

    Article  Google Scholar 

  • Singh, R., & Ardejani, F. D. (2004). Finite volume discretisation for solving acid mine drainage problems. Archives of Mining Sciences, 49(4), 531–556.

    Google Scholar 

  • Smith, M. A., & Glasser, D. (2005). Spontaneous combustion of carbonaceous stockpiles. Part I: The relative importance of various intrinsic coal properties and properties of the reaction system. Fuel, 84(9), 1151–1160.

    Article  Google Scholar 

  • Smith, A. C., Miron, Y., & Lazzara, C. P. (1991). Large-scale studies of spontaneous combustion of coal. Pittsburgh: United States Dept. of the Interior, Bureau of Mines.

    Google Scholar 

  • Solomon, P. R. (1981). Coal structure and thermal decomposition, New Approaches in Coal Chemistry. ACS symposium series. American Chemical Society (pp. 61–71).

    Google Scholar 

  • Sondreal, E. A., & Ellman, R. C. (1974). Laboratory determination of factors affecting storage of North Dakota lignite: Computer simulation of spontaneous heating. [28 refs; graphs], Bureau of Mines, Grand Forks, N. Dak. (USA). Grand Forks Energy Research Lab.

    Google Scholar 

  • Speight, J. G. (1994). The chemistry and technology of coal. Boca Raton: CRC press.

    Google Scholar 

  • Spiro, C. L., & Kosky, P. G. (1982). Space-filling models for coal. 2. Extension to coals of various ranks. Fuel, 61(11), 1080–1IN2.

    Article  Google Scholar 

  • Stracher, G. B., et al. (2005). New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia. American Mineralogist, 90(11–12), 1729–1739.

    Article  Google Scholar 

  • Suggate, R. (1982). Low-rank sequences and scales of organic metamorphism. Journal of Petroleum Geology, 4(4), 377–392.

    Article  Google Scholar 

  • Sujanti, W., Zhang, D.-K., & Chen, X. D. (1999). Low-temperature oxidation of coal studied using wire-mesh reactors with both steady-state and transient methods. Combustion and Flame, 117(3), 646–651.

    Article  Google Scholar 

  • Sweeny, P., Grow, D., & McCollor, D. (1988). Studies on ignition of coal: the effects of rank, temperature, volatile content, and lithotype. Prepr. Pap., Am. Chem. Soc., Div. Fuel Chem.;(United States) 33(CONF-8809272-).

    Google Scholar 

  • Thomas, J., & Damberger, H. H. (1976). Internal surface area, moisture content, and porosity of Illinois coals: Variations with coal rank. Circular no. 493. Urbana: Illinois State Geological Survey.

    Google Scholar 

  • Vance, W. E., Chen, X. D., & Scott, S. C. (1996). The rate of temperature rise of a subbituminous coal during spontaneous combustion in an adiabatic device: The effect of moisture content and drying methods. Combustion and Flame, 106(3), 261–270.

    Article  Google Scholar 

  • Walters, A. (1996). Joseph Conrad and the spontaneous combustion of coal part 1. Coal Preparation, 17(3–4), 147–165.

    Article  Google Scholar 

  • Weiqing, Z., et al. (2011). Study on coal spontaneous combustion characteristic structures affected by ionic liquids. Procedia Engineering, 26, 480–485.

    Article  Google Scholar 

  • Xu, J. (2001). Determination theory of coal spontaneous combustion zone. Beijing: China Coal Industry Publishing House.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X. (2020). Introduction. In: Spontaneous Combustion of Coal. Springer, Cham. https://doi.org/10.1007/978-3-030-33691-2_1

Download citation

Publish with us

Policies and ethics