Advertisement

Polymer-Mediated Stability of Micellar Suspensions

  • Álvaro González GarcíaEmail author
Chapter
  • 132 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Despite their wide range of applications, fundamental understanding of how micelles respond to other components in solution is scarce. Here, the colloidal stability of micelle solutions in presence of (homo)polymers is investigated following a theoretical bottom-up approach. A simple, yet insightful, polymer mediated micelle–micelle interaction is extracted via the changes in the micelle–unimer equilibrium with varying the inter-micelle distance in presence of homopolymer. For different polymer-to-micelle size ratios, model crew-cut and starlike micelles are studied, for both homopolymer depletion and adsorption from/into the corona. The fluffy nature of the corona may prevent depletion-induced destabilization of the micellar suspension. Adsorption of polymers into the corona induces bridging attraction between micelles. Crew-cut micelles have a narrower yet denser corona, hence penetration of guest compounds into the coronal domain is less pronounced than for starlike micelles. This makes crew-cut micelles more suitable for applications in crowded environments, such as drug delivery. The trends observed for the colloidal stability of crew-cut micelles qualitatively match with experimental observations on aqueous dispersions of polycaprolactone–polyethylene glycol (PCL-PEO) micellar suspensions with added PEO chains.

Supplementary material

References

  1. 1.
    F.A.M. Leermakers, J.C. Eriksson, J. Lyklema, in Soft Colloids, Fundamentals of Interface and Colloid Science, vol. 5, edited by J. Lyklema (Academic Press, 2005), https://www.sciencedirect.com/bookseries/fundamentals-of-interface-and-colloid-science/vol/5/suppl/C
  2. 2.
    Y. Mai, A. Eisenberg, Chem. Soc. Rev. 41, 5969 (2012), https://pubs.rsc.org/en/content/articlelanding/2012/cs/c2cs35115c#!divAbstract
  3. 3.
    T. Riley, T. Govender, S. Stolnik, C.D. Xiong, M.C. Garnett, L. Illum, S.S. Davis, Colloids Surf. B: Biointerfaces 16, 147 (1999), https://www.sciencedirect.com/science/article/pii/S0927776599000661
  4. 4.
    L. Yang, X. Qi, P. Liu, A. El Ghzaoui, S. Li, Int. J. Pharm. 394, 43 (2010), https://www.sciencedirect.com/science/article/pii/S0378517310003029
  5. 5.
    W. Li, J. Li, J. Gao, B. Li, Y. Xia, Y. Meng, Y. Yu, H. Chen, J. Dai, H. Wang, Y. Guo, Biomaterials 32, 3832 (2011), https://www.sciencedirect.com/science/article/pii/S0142961211001219
  6. 6.
    J. Wang, X. Xing, X. Fang, C. Zhou, F. Huang, Z. Wu, J. Lou, W. Liang, Philos. Trans. R. Soc. A 371, 20120309 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    D. Lombardo, P. Calandra, D. Barreca, S. Magazù, M.A. Kiselev, Nanomaterials 6, 125 (2016), https://www.mdpi.com/2079-4991/6/7/125/htm
  8. 8.
    A. Muñoz-Bonilla, S.I. Ali, A. del Campo, M. Fernández-García, A.M. van Herk, J.P.A. Heuts, Macromolecules 44, 4282–4290 (2011), https://pubs.acs.org/doi/abs/10.1021/ma200626p
  9. 9.
    A. Syrbe, W.J. Bauer, H. Klostermeyer, Int. Dairy J. 8, 179 (1998).  https://doi.org/10.1016/S0958-6946(98)00041-7
  10. 10.
    J. O’Connell, V. Grinberg, C. de Kruif, J. Colloid Interface Sci. 258, 33 (2003), http://www.sciencedirect.com/science/article/pii/S0021979702000668
  11. 11.
    C.B.E. Guerin, I. Szleifer, Langmuir 15, 7901 (1999)CrossRefGoogle Scholar
  12. 12.
    I. Hamley, Block Copolymers in Solution: Fundamentals and Applications (Wiley, New York, 2005)Google Scholar
  13. 13.
    R. Savić, T. Azzam, A. Eisenberg, D. Maysinger, Langmuir 22, 3570 (2006), https://pubs.acs.org/doi/10.1021/la0531998
  14. 14.
    G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces (Springer, Netherlands, 1998), pp. XX, 496Google Scholar
  15. 15.
    B. Vincent, J. Edwards, S. Emmett, A. Jones, Colloids Surf. 18, 261 (1986), http://www.sciencedirect.com/science/article/pii/0166662286803171
  16. 16.
    S. Abbas, T.P. Lodge, Phys. Rev. Lett. 99 (2007), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.137802
  17. 17.
    R. Yamazaki, N. Numasawa, T. Nose, Polymer 45, 6227 (2004), https://www.sciencedirect.com/science/article/pii/S0032386104004872?via%3Dihub
  18. 18.
    S. Abbas, T.P. Lodge, Macromolecules 41, 8895 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Lauw, F.A.M. Leermakers, M.A. Cohen Stuart, O.V. Borisov, E.B. Zhulina, Macromolecules 39, 3628 (2006), https://pubs.acs.org/doi/abs/10.1021/ma060163t
  20. 20.
    E.B. Zhulina, O.V. Borisov, Macromolecules 45, 4429 (2012).  https://doi.org/10.1021/ma300195n
  21. 21.
    M.L. Kurnaz, J.V. Maher, Phys. Rev. E 55, 572 (1997), https://journals.aps.org/pre/abstract/10.1103/PhysRevE.55.572
  22. 22.
    A. Quigley, D. Williams, Eur. J. Pharm. Biopharm. 96, 282 (2015), https://www.sciencedirect.com/science/article/pii/S0939641115003288
  23. 23.
    A. Mulero, Theory and simulations of Hard-Sphere Fluids and Related Sytem (Springer, Heidelberg, 2008)CrossRefGoogle Scholar
  24. 24.
    G.A. Vliegenthart, H.N.W. Lekkerkerker, J. Chem. Phys. 112, 5364 (2000), https://aip.scitation.org/doi/10.1063/1.481106
  25. 25.
    Č. Koňák, Z. Tuzar, P. Štěpánek, B. Sedláček, P. Kratochvíl, in Frontiers in Polymer Science, edited by W. Wilke (Steinkopff, Darmstadt, 1985), pp. 15–19, https://link.springer.com/chapter/10.1007/BFb0114009
  26. 26.
    M. Villacampa, E. Diaz de Apodaca, J.R. Quintana, I. Katime, Macromolecules 28, 4144 (1995), https://pubs.acs.org/doi/abs/10.1021/ma00116a014#citing
  27. 27.
    T. Yoshimura, K. Esumi, J. Colloid Interface Sci. 276, 450 (2004).  https://doi.org/10.1016/j.jcis.2004.03.069
  28. 28.
    W. Li, M. Nakayama, J. Akimoto, T. Okano, Polymer 52, 3783 (2011).  https://doi.org/10.1016/j.polymer.2011.06.026
  29. 29.
    T. Zinn, L. Willner, R. Lund, V. Pipich, M.-S. Appavou, D. Richter, Soft Matter 10, 5212 (2014).  https://doi.org/10.1039/C4SM00625A
  30. 30.
    K. Mortensen, Europhys. Lett. 19, 599 (1992).  https://doi.org/10.1209/0295-5075/19/7/006
  31. 31.
    K. Mortensen, J. Phys.: Condens. Matter 8, A103 (1996).  https://doi.org/10.1088/0953-8984/8/25a/008
  32. 32.
    A. Ianiro, J. Patterson, Á. González García, M.M.J. van Rijt, M.M.R.M. Hendrix, N.A.J.M. Sommerdijk, I.K. Voets, A.C.C. Esteves, R. Tuinier, J. Polym. Sci., Part B: Polym. Phys. 56, 330 (2018), https://onlinelibrary.wiley.com/doi/full/10.1002/polb.24545
  33. 33.
    H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg, 2011)CrossRefGoogle Scholar
  34. 34.
    C. Guerrero-Sanchez, D. Wouters, C.-A. Fustin, J.-F. Gohy, B.G.G. Lohmeijer, U.S. Schubert, Macromolecules 38, 10185 (2005), https://pubs.acs.org/doi/10.1021/ma051544u
  35. 35.
    R.Tuinier, S. Ouhajji, P. Linse, Eur. Phys. J. E 39 (2016), https://link.springer.com/article/10.1140/epje/i2016-16115-5
  36. 36.
    A. Jones, B. Vincent, Colloids Surfaces 42, 113 (1989), http://www.sciencedirect.com/science/article/pii/0166662289800812
  37. 37.
    P. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979), https://books.google.nl/books?id=Gh1TcAAACAAJ
  38. 38.
    G.J. Fleer, A.M. Skvortsov, R. Tuinier, Macromolecules 36, 7857 (2003), https://pubs.acs.org/doi/abs/10.1021/ma0345145
  39. 39.
    R. Tuinier, G.A. Vliegenthart, H.N.W. Lekkerkerker, J. Chem. Phys. 113, 10768 (2000).  https://doi.org/10.1063/1.1323977
  40. 40.
    A. Ianiro, Á. González García, S. Wijker, J.P. Patterson, A.C.C. Esteves, R. Tuinier, submitted. https://pubs.acs.org/doi/10.1021/acs.langmuir.9b00180

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry and Debye InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations