Skip to main content

On the Colloidal Stability of Association Colloids

  • Chapter
  • First Online:
Polymer-Mediated Phase Stability of Colloids

Part of the book series: Springer Theses ((Springer Theses))

  • 261 Accesses

Abstract

Using self-consistent field (SCF) calculations, we quantify the interactions between spherical diblock copolymer micelles following a bottom-up approach. From the equilibrium properties of self-assembling micelles at different separation distances, a simple yet insightful micelle–micelle interaction can be extracted. The SCF results match with an analytical model based upon closed expressions for the free energy change per diblock copolymer in the micelle. To gain insight on the colloidal stability of micelle solutions, the second virial coefficient normalised by the undistorted micelle volume \(B_2^*\) is evaluated. For stable micelle solutions (\(B_2^*\gtrsim -6\)), we find a weak dependence of \(B_2^*\) on solvophilic block length for varying core-forming block properties (core solvation and block length). The micelle suspension gets unstable (\(B_2^*\lesssim -6\)) when the corona-forming block crosses \(\Theta \)-solvent conditions towards poor solvency. In contrast with what is expected from models where the soft nature of the micelle is not taken into account, increasing the effective grafting density of solvophilic tails from the core then leads to colloidal destabilisation of the micelle suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.A.M. Leermakers, J.C. Eriksson, J. Lyklema, Soft colloids, in Fundamentals of Interface and Colloid Science, vol. 5, ed. by J. Lyklema (Academic Press, Cambridge, 2005) Chap. 4, https://www.sciencedirect.com/bookseries/fundamentals-of-interface-and-colloid-science/vol/5/suppl/C

  2. Y. Mai, A. Eisenberg, Chem. Soc. Rev. 41, 5969 (2012), https://pubs.rsc.org/en/content/articlelanding/2012/cs/c2cs35115c#!divAbstract

  3. A. Muñoz-Bonilla, S.I. Ali, A. del Campo, M. Fernández-García, A.M. van Herk, J.P.A. Heuts, Macromolecules 44, 4282–4290 (2011), https://doi.org/10.1021/ma200626p

  4. R. Tuinier, C.G. de Kruif, J. Chem. Phys. 117, 1290 (2002), https://doi.org/10.1063/1.1484379?journalCode=jcp

  5. L. Yang, X. Qi, P. Liu, A. El Ghzaoui, S. Li, Int. J. Pharm. 394, 43 (2010), https://www.sciencedirect.com/science/article/pii/S0378517310003029

  6. W. Li, J. Li, J. Gao, B. Li, Y. Xia, Y. Meng, Y. Yu, H. Chen, J. Dai, H. Wang, Y. Guo, Biomaterials 32, 3832 (2011), https://www.sciencedirect.com/science/article/pii/S0142961211001219

  7. J. Wang, X. Xing, X. Fang, C. Zhou, F. Huang, Z. Wu, J. Lou, W. Liang, Phil. Trans. R. Soc. A 371, 20120309 (2013)

    Article  ADS  Google Scholar 

  8. D. Lombardo, P. Calandra, D. Barreca, S. Magazù, M.A. Kiselev, Nanomaterials 6, 125 (2016), https://www.mdpi.com/2079-4991/6/7/125/htm

  9. M. Silbert, E. Canessa, M.J. Grimson, O.H. Scalise, J. Phys.: Condens. Matter 11, 10119 (1999), https://doi.org/10.1088/0953-8984/11/50/306/meta

  10. J.N. Israelachvili, Intermolecular and Surface Forces, 3rd edn. (Academic Press, Amsterdam, 2011)

    Google Scholar 

  11. I. Hamley, Block Copolymers in Solution: Fundamentals and Applications (Wiley, Hoboken, 2005)

    Google Scholar 

  12. E.B. Zhulina, O.V. Borisov, V.A. Priamitsyn, J. Colloid Interface Sci. 137, 495 (1990), https://www.sciencedirect.com/science/article/pii/002197979090423L

  13. E.K. Lin, A.P. Gast, Macromolecules 29, 390 (1996), https://doi.org/10.1021/ma9505282

  14. A.P. Gast, Langmuir 12, 4060 (1996), https://doi.org/10.1021/la951538z

  15. R. Lund, L. Willner, D. Richter, E.E. Dormidontova, Macromolecules 39, 4566 (2006), https://doi.org/10.1021/ma060328y

  16. S.-H. Choi, T.P. Lodge, F.S. Bates, Phys. Rev. Lett. 104, 047802 (2010), https://doi.org/10.1103/PhysRevLett.104.047802

  17. S.-H. Choi, F.S. Bates, T.P. Lodge, Macromolecules 44, 3594 (2011), https://doi.org/10.1021/ma102788v

  18. G.M. Grason, J. Chem. Phys. 126, 114904 (2007), https://doi.org/10.1063/1.2709646

  19. F. Puaud, T. Nicolai, E. Nicol, L. Benyahia, G. Brotons, Phys. Rev. Lett. 110 (2013), https://doi.org/10.1103/PhysRevLett.110.028302

  20. C.N. Likos, H.Löwen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgaier, D. Richter, Phys. Rev. Lett. 80, 4450 (1998), https://doi.org/10.1103/PhysRevLett.80.4450

  21. E.B. Zhulina, M. Adam, I. LaRue, S.S. Sheiko, M. Rubinstein, Macromolecules 38, 5330 (2005), https://doi.org/10.1021/ma048102n

  22. A.N. Semenov, I.A. Nyrkova, A.R. Khokhlov, Macromolecules 28, 7491 (1995), https://doi.org/10.1021/ma00126a029

  23. M.L. Kurnaz, J.V. Maher, Phys. Rev. E 55, 572 (1997), https://doi.org/10.1103/PhysRevE.55.572

  24. A. Quigley, D. Williams, Eur. J. Pharm. Biopharm. 96, 282 (2015), https://www.sciencedirect.com/science/article/pii/S0939641115003288

  25. Č. Koňák, Z. Tuzar, P. Štěpánek, B. Sedláček, P. Kratochvíl, Frontiers in Polymer Science, ed. by W. Wilke (Steinkopff, Darmstadt, 1985), pp. 15–19, in https://doi.org/10.1007/BFb0114009

  26. M. Villacampa, E. Diaz de Apodaca, J.R. Quintana, I. Katime, Macromolecules 28, 4144 (1995), https://doi.org/10.1021/ma00116a014#citing

  27. T. Yoshimura, K. Esumi, J. Colloid Interface Sci. 276, 450 (2004), https://doi.org/10.1016/j.jcis.2004.03.069

  28. W. Li, M. Nakayama, J. Akimoto, T. Okano, Polymer 52, 3783 (2011), https://doi.org/10.1016/j.polymer.2011.06.026

  29. T. Zinn, L. Willner, R. Lund, V. Pipich, M.-S. Appavou, D. Richter, Soft Matter 10, 5212 (2014), https://doi.org/10.1039/C4SM00625A

  30. A. Mulero, Theory and simulations of Hard-Sphere Fluids and Related System ( Springer, Heidelberg, 2008)

    Google Scholar 

  31. G.A. Vliegenthart, H.N.W. Lekkerkerker, J. Chem. Phys. 112, 5364 (2000), https://doi.org/10.1063/1.481106

  32. R. Tuinier, M.S. Feenstra, Langmuir 30, 13121 (2014), https://doi.org/10.1021/la5023856

  33. F. Platten, N.E. Valadez-Pérez, R. Castañeda-Priego, S.U. Egelhaaf, J. Chem. Phys. 142, 174905 (2015), https://doi.org/10.1063/1.4919127

  34. E.B. Zhulina, O.V. Borisov, Macromolecules 45, 4429 (2012), https://doi.org/10.1021/ma300195n

  35. E. Helfand, Y. Tagami, J. Polym. Sci., Part B: Polym. Lett. 9, 741 (1971), https://doi.org/10.1002/pol.1971.110091006

  36. Á. González García, A. Ianiro, R. Tuinier, ACS Omega (Supplemental information) 3, 17976 (2018), https://doi.org/10.1021/acsomega.8b02548

  37. H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg, 2011)

    Google Scholar 

  38. J.M.H.M. Scheutjens, G.J. Fleer, J. Chem. Phys. 83, 1619 (1979), https://doi.org/10.1021/j100475a012

  39. J.M.H.M. Scheutjens, G.J. Fleer, J. Chem. Phys. 84, 178 (1980), https://doi.org/10.1021/j100439a011

  40. G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces (Springer, Netherlands, 1998), pp. XX, 496

    Google Scholar 

  41. C.B.E. Guerin, I. Szleifer, Langmuir 15, 7901 (1999)

    Google Scholar 

  42. C. Guerrero-Sanchez, D. Wouters, C.-A. Fustin, J.-F. Gohy, B.G.G. Lohmeijer, U.S. Schubert, Macromolecules 38, 10185 (2005), https://doi.org/10.1021/ma051544u

  43. M. Amann, L. Willner, J. Stellbrink, A. Radulescu, D. Richter, Soft Matter 11, 4208 (2015), https://doi.org/10.1039/C5SM00469A

  44. K. van Gruijthuijsen, M. Obiols-Rabasa, M. Heinen, G. Nägele, A. Stradner, Langmuir 29, 11199 (2013), https://doi.org/10.1021/la402104q

  45. C.N. Likos, H.M. Harreis, Condens. Matter Phys. 5, 173 (2002), http://dspace.nbuv.gov.ua/handle/123456789/120565

  46. S.-H. Chen, M. Broccio, Y. Liu, E. Fratini, P. Baglioni, J. Appl. Crystallogr. 40, s321 (2007), https://doi.org/10.1107/S0021889807006723

  47. G.J. Brown, R.W. Richards, R.K. Heenan, Polymer 42, 7663 (2001), https://www.sciencedirect.com/science/article/pii/S003238610100252X

  48. J. Bergsma, F.A.M. Leermakers, J. van der Gucht, Phys. Chem. Chem. Phys. 17, 9001 (2015), https://doi.org/10.1039/C4CP03508A

  49. E.B. Zhulina, O.V. Borisov, Makromol. Chem., Macromol. Symp. 44, 275 (1991), https://doi.org/10.1002/masy.19910440128

  50. D.N. Benoit, H. Zhu, M.H. Lilierose, R.A. Verm, N. Ali, A.N. Morrison, J.D. Fortner, C. Avendano, V.L. Colvin, Anal. Chem. 84, 9238 (2012), https://doi.org/10.1021/ac301980a

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro González García .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González García, Á. (2019). On the Colloidal Stability of Association Colloids. In: Polymer-Mediated Phase Stability of Colloids. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-33683-7_7

Download citation

Publish with us

Policies and ethics