Advertisement

On the Colloidal Stability of Association Colloids

  • Álvaro González GarcíaEmail author
Chapter
  • 159 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Using self-consistent field (SCF) calculations, we quantify the interactions between spherical diblock copolymer micelles following a bottom-up approach. From the equilibrium properties of self-assembling micelles at different separation distances, a simple yet insightful micelle–micelle interaction can be extracted. The SCF results match with an analytical model based upon closed expressions for the free energy change per diblock copolymer in the micelle. To gain insight on the colloidal stability of micelle solutions, the second virial coefficient normalised by the undistorted micelle volume \(B_2^*\) is evaluated. For stable micelle solutions (\(B_2^*\gtrsim -6\)), we find a weak dependence of \(B_2^*\) on solvophilic block length for varying core-forming block properties (core solvation and block length). The micelle suspension gets unstable (\(B_2^*\lesssim -6\)) when the corona-forming block crosses \(\Theta \)-solvent conditions towards poor solvency. In contrast with what is expected from models where the soft nature of the micelle is not taken into account, increasing the effective grafting density of solvophilic tails from the core then leads to colloidal destabilisation of the micelle suspension.

References

  1. 1.
    F.A.M. Leermakers, J.C. Eriksson, J. Lyklema, Soft colloids, in Fundamentals of Interface and Colloid Science, vol. 5, ed. by J. Lyklema (Academic Press, Cambridge, 2005) Chap. 4, https://www.sciencedirect.com/bookseries/fundamentals-of-interface-and-colloid-science/vol/5/suppl/C
  2. 2.
    Y. Mai, A. Eisenberg, Chem. Soc. Rev. 41, 5969 (2012), https://pubs.rsc.org/en/content/articlelanding/2012/cs/c2cs35115c#!divAbstract
  3. 3.
    A. Muñoz-Bonilla, S.I. Ali, A. del Campo, M. Fernández-García, A.M. van Herk, J.P.A. Heuts, Macromolecules 44, 4282–4290 (2011),  https://doi.org/10.1021/ma200626p
  4. 4.
    R. Tuinier, C.G. de Kruif, J. Chem. Phys. 117, 1290 (2002),  https://doi.org/10.1063/1.1484379?journalCode=jcp
  5. 5.
    L. Yang, X. Qi, P. Liu, A. El Ghzaoui, S. Li, Int. J. Pharm. 394, 43 (2010), https://www.sciencedirect.com/science/article/pii/S0378517310003029
  6. 6.
    W. Li, J. Li, J. Gao, B. Li, Y. Xia, Y. Meng, Y. Yu, H. Chen, J. Dai, H. Wang, Y. Guo, Biomaterials 32, 3832 (2011), https://www.sciencedirect.com/science/article/pii/S0142961211001219
  7. 7.
    J. Wang, X. Xing, X. Fang, C. Zhou, F. Huang, Z. Wu, J. Lou, W. Liang, Phil. Trans. R. Soc. A 371, 20120309 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    D. Lombardo, P. Calandra, D. Barreca, S. Magazù, M.A. Kiselev, Nanomaterials 6, 125 (2016), https://www.mdpi.com/2079-4991/6/7/125/htm
  9. 9.
    M. Silbert, E. Canessa, M.J. Grimson, O.H. Scalise, J. Phys.: Condens. Matter 11, 10119 (1999),  https://doi.org/10.1088/0953-8984/11/50/306/meta
  10. 10.
    J.N. Israelachvili, Intermolecular and Surface Forces, 3rd edn. (Academic Press, Amsterdam, 2011)Google Scholar
  11. 11.
    I. Hamley, Block Copolymers in Solution: Fundamentals and Applications (Wiley, Hoboken, 2005)Google Scholar
  12. 12.
    E.B. Zhulina, O.V. Borisov, V.A. Priamitsyn, J. Colloid Interface Sci. 137, 495 (1990), https://www.sciencedirect.com/science/article/pii/002197979090423L
  13. 13.
    E.K. Lin, A.P. Gast, Macromolecules 29, 390 (1996),  https://doi.org/10.1021/ma9505282
  14. 14.
    A.P. Gast, Langmuir 12, 4060 (1996),  https://doi.org/10.1021/la951538z
  15. 15.
    R. Lund, L. Willner, D. Richter, E.E. Dormidontova, Macromolecules 39, 4566 (2006),  https://doi.org/10.1021/ma060328y
  16. 16.
    S.-H. Choi, T.P. Lodge, F.S. Bates, Phys. Rev. Lett. 104, 047802 (2010),  https://doi.org/10.1103/PhysRevLett.104.047802
  17. 17.
    S.-H. Choi, F.S. Bates, T.P. Lodge, Macromolecules 44, 3594 (2011),  https://doi.org/10.1021/ma102788v
  18. 18.
    G.M. Grason, J. Chem. Phys. 126, 114904 (2007),  https://doi.org/10.1063/1.2709646
  19. 19.
    F. Puaud, T. Nicolai, E. Nicol, L. Benyahia, G. Brotons, Phys. Rev. Lett. 110 (2013),  https://doi.org/10.1103/PhysRevLett.110.028302
  20. 20.
    C.N. Likos, H.Löwen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgaier, D. Richter, Phys. Rev. Lett. 80, 4450 (1998),  https://doi.org/10.1103/PhysRevLett.80.4450
  21. 21.
    E.B. Zhulina, M. Adam, I. LaRue, S.S. Sheiko, M. Rubinstein, Macromolecules 38, 5330 (2005),  https://doi.org/10.1021/ma048102n
  22. 22.
    A.N. Semenov, I.A. Nyrkova, A.R. Khokhlov, Macromolecules 28, 7491 (1995),  https://doi.org/10.1021/ma00126a029
  23. 23.
    M.L. Kurnaz, J.V. Maher, Phys. Rev. E 55, 572 (1997),  https://doi.org/10.1103/PhysRevE.55.572
  24. 24.
    A. Quigley, D. Williams, Eur. J. Pharm. Biopharm. 96, 282 (2015), https://www.sciencedirect.com/science/article/pii/S0939641115003288
  25. 25.
    Č. Koňák, Z. Tuzar, P. Štěpánek, B. Sedláček, P. Kratochvíl, Frontiers in Polymer Science, ed. by W. Wilke (Steinkopff, Darmstadt, 1985), pp. 15–19, in  https://doi.org/10.1007/BFb0114009
  26. 26.
    M. Villacampa, E. Diaz de Apodaca, J.R. Quintana, I. Katime, Macromolecules 28, 4144 (1995),  https://doi.org/10.1021/ma00116a014#citing
  27. 27.
    T. Yoshimura, K. Esumi, J. Colloid Interface Sci. 276, 450 (2004),  https://doi.org/10.1016/j.jcis.2004.03.069
  28. 28.
    W. Li, M. Nakayama, J. Akimoto, T. Okano, Polymer 52, 3783 (2011),  https://doi.org/10.1016/j.polymer.2011.06.026
  29. 29.
    T. Zinn, L. Willner, R. Lund, V. Pipich, M.-S. Appavou, D. Richter, Soft Matter 10, 5212 (2014),  https://doi.org/10.1039/C4SM00625A
  30. 30.
    A. Mulero, Theory and simulations of Hard-Sphere Fluids and Related System ( Springer, Heidelberg, 2008)Google Scholar
  31. 31.
    G.A. Vliegenthart, H.N.W. Lekkerkerker, J. Chem. Phys. 112, 5364 (2000),  https://doi.org/10.1063/1.481106
  32. 32.
    R. Tuinier, M.S. Feenstra, Langmuir 30, 13121 (2014),  https://doi.org/10.1021/la5023856
  33. 33.
    F. Platten, N.E. Valadez-Pérez, R. Castañeda-Priego, S.U. Egelhaaf, J. Chem. Phys. 142, 174905 (2015),  https://doi.org/10.1063/1.4919127
  34. 34.
    E.B. Zhulina, O.V. Borisov, Macromolecules 45, 4429 (2012),  https://doi.org/10.1021/ma300195n
  35. 35.
    E. Helfand, Y. Tagami, J. Polym. Sci., Part B: Polym. Lett. 9, 741 (1971),  https://doi.org/10.1002/pol.1971.110091006
  36. 36.
    Á. González García, A. Ianiro, R. Tuinier, ACS Omega (Supplemental information) 3, 17976 (2018),  https://doi.org/10.1021/acsomega.8b02548
  37. 37.
    H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg, 2011)Google Scholar
  38. 38.
    J.M.H.M. Scheutjens, G.J. Fleer, J. Chem. Phys. 83, 1619 (1979),  https://doi.org/10.1021/j100475a012
  39. 39.
    J.M.H.M. Scheutjens, G.J. Fleer, J. Chem. Phys. 84, 178 (1980),  https://doi.org/10.1021/j100439a011
  40. 40.
    G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces (Springer, Netherlands, 1998), pp. XX, 496Google Scholar
  41. 41.
    C.B.E. Guerin, I. Szleifer, Langmuir 15, 7901 (1999)Google Scholar
  42. 42.
    C. Guerrero-Sanchez, D. Wouters, C.-A. Fustin, J.-F. Gohy, B.G.G. Lohmeijer, U.S. Schubert, Macromolecules 38, 10185 (2005),  https://doi.org/10.1021/ma051544u
  43. 43.
    M. Amann, L. Willner, J. Stellbrink, A. Radulescu, D. Richter, Soft Matter 11, 4208 (2015),  https://doi.org/10.1039/C5SM00469A
  44. 44.
    K. van Gruijthuijsen, M. Obiols-Rabasa, M. Heinen, G. Nägele, A. Stradner, Langmuir 29, 11199 (2013),  https://doi.org/10.1021/la402104q
  45. 45.
    C.N. Likos, H.M. Harreis, Condens. Matter Phys. 5, 173 (2002), http://dspace.nbuv.gov.ua/handle/123456789/120565
  46. 46.
    S.-H. Chen, M. Broccio, Y. Liu, E. Fratini, P. Baglioni, J. Appl. Crystallogr. 40, s321 (2007),  https://doi.org/10.1107/S0021889807006723
  47. 47.
    G.J. Brown, R.W. Richards, R.K. Heenan, Polymer 42, 7663 (2001), https://www.sciencedirect.com/science/article/pii/S003238610100252X
  48. 48.
    J. Bergsma, F.A.M. Leermakers, J. van der Gucht, Phys. Chem. Chem. Phys. 17, 9001 (2015),  https://doi.org/10.1039/C4CP03508A
  49. 49.
    E.B. Zhulina, O.V. Borisov, Makromol. Chem., Macromol. Symp. 44, 275 (1991),  https://doi.org/10.1002/masy.19910440128
  50. 50.
    D.N. Benoit, H. Zhu, M.H. Lilierose, R.A. Verm, N. Ali, A.N. Morrison, J.D. Fortner, C. Avendano, V.L. Colvin, Anal. Chem. 84, 9238 (2012),  https://doi.org/10.1021/ac301980a

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry and Debye InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations