Polymer-Mediated Phase Stability of Colloids pp 85-109 | Cite as
Discotic Dispersions Mediated by Depletion
- 136 Downloads
Abstract
In this Chapter we show how free volume theory (FVT) is an efficient and tractable thermodynamic framework capable of unravelling the complicated multi-phase behaviour of disc–polymer mixtures. Three principal reference phases for the hard platelets are considered: isotropic (I), nematic (N), and columnar (C). We derive analytical expressions that enable us to systematically trace the different types of phase coexistences revealed upon adding depletants, and confirm the predictive power of FVT by testing the calculated diagrams against phase stability scenarios from alternative approaches. A wide range of multi-phase equilibria is revealed, involving two-phase isostructural transitions of all phase symmetries (I, N, C) considered as well as the possible three-phase coexistences. Moreover, we identify the system parameters, relative disc shapes and colloid–polymer size ratios, at which four-phase equilibria are expected. These involve a remarkable coexistence of all three phase states commonly encountered in discotics including isostructural coexistences I\(_1\)–I\(_2\)–N–C, I–N\(_1\)–N\(_2\)–C, and I–N–C\(_1\)–C\(_2\). The isostructural C\(_1\)–C\(_2\) coexistence is analysed in detail and compared to direct-coexistence Monte Carlo computations. We improve FVT for disc–polymer mixtures, particularly accounting for a better depletant partitioning over the discotic columnar phases. From theory and simulations it is clear that in the C\(_1\) phase depletants are present between the flat faces of the discs, as opposed to the denser (C\(_2\)) phase. Consequently, the C\(_1\)–C\(_2\) coexistence is driven by the depletant partitioning in the intra-columnar direction. This study helps to understand the role of compartmentalisation in highly asymmetric, crowded systems.
References
- 1.L. Yuan, X.L. Weng, J.L. Xie, L.J. Deng, Mater. Res. Innov. 19, S1 (2015). https://doi.org/10.1179/1432891715Z.0000000001497
- 2.L. Bailey, H.N.W. Lekkerkerker, G.C. Maitland, Soft Matter 11, 222 (2015). https://doi.org/10.1039/C4SM01717J
- 3.T. Ye, N. Phan-Thien, C.T. Lim, J. Biomech. 49, 2255 (2016). https://doi.org/10.1016/j.jbiomech.2015.11.050
- 4.E. Dickinson, Food Hydrocoll. 52, 497 (2016). https://doi.org/10.1016/j.foodhyd.2015.07.029
- 5.F.M. Van der Kooij, M. Vogel, H.N.W. Lekkerkerker, Phys. Rev. E 62, 5397 (2000). http://journals.aps.org/pre/abstract/10.1103/PhysRevE.62.5397
- 6.W. Zhu, D. Sun, S. Liu, N. Wang, J. Zhang, L. Luan, Colloids Surf. A 301, 106 (2007). http://www.sciencedirect.com/science/article/pii/S0927775706009666
- 7.L. Luan, W. Li, S. Liu, D. Sun, Langmuir 25, 6349 (2009). https://doi.org/10.1021/la804023b
- 8.S.M. Oversteegen, C. Vonk, J.E.G.J. Wijnhoven, H.N.W. Lekkerkerker, Phys. Rev. E 71, 041406 (2005). https://doi.org/10.1103/PhysRevE.71.041406
- 9.D. Kleshchanok, A.V. Petukhov, P. Holmqvist, D.V. Byelov, H.N.W. Lekkerkerker, Langmuir 26, 13614 (2010). https://doi.org/10.1021/la101891e
- 10.D. Kleshchanok, J.-M. Meijer, A.V. Petukhov, G. Portale, H.N.W. Lekkerkerker, Soft Matter 7, 2832 (2011). https://doi.org/10.1039/C0SM01206H
- 11.N. Doshi, G. Cinacchi, J.S. van Duijneveldt, T. Cosgrove, S.W. Prescott, I. Grillo, J. Phipps, D.I. Gittins, J. Phys.: Condens. Matter 23, 194109 (2011). http://stacks.iop.org/0953-8984/23/i=19/a=194109
- 12.D. Kleshchanok, J.-M. Meijer, A.V. Petukhov, G. Portale, H.N.W. Lekkerkerker, Soft Matter 8, 191 (2012). https://doi.org/10.1039/C1SM06535A
- 13.D. de las Heras, N. Doshi, T. Cosgrove, J. Phipps, D.I. Gittins, J.S. van Duijneveldt, M. Schmidt, Sci. Rep. 2, 789 (2012). https://doi.org/10.1038/srep00789
- 14.J. Landman, E. Paineau, P. Davidson, I. Bihannic, L.J. Michot, A.-M. Philippse, A.V. Petukhov, H.N.W. Lekkerkerker, J. Phys. Chem. B 118, 4913 (2014). https://doi.org/10.1021/jp500036v
- 15.M. Chen, H. Li, Y. Chen, A.F. Mejia, X. Wang, Z. Cheng, Soft Matter 11, 5775 (2015). https://doi.org/10.1039/C5SM00615E
- 16.T. Nakato, Y. Yamashita, E. Mouri, K. Kuroda, Soft Matter 10, 3161 (2014). https://doi.org/10.1039/C3SM52311J
- 17.M.A. Bates, D. Frenkel, Phys. Rev. E 62, 5225 (2000). https://doi.org/10.1103/PhysRevE.62.5225
- 18.S.-D. Zhang, P.A. Reynolds, J.S. van Duijneveldt, J. Chem. Phys. 117, 9947 (2002). https://doi.org/10.1063/1.1518007
- 19.S.-D. Zhang, P.A. Reynolds, J.S. van Duijneveldt, Mol. Phys. 100, 3041 (2002). https://doi.org/10.1080/00268970210130146
- 20.L. Harnau, Mol. Phys. 106, 1975 (2008). https://doi.org/10.1080/00268970802032301
- 21.D. de las Heras, M. Schmidt, Philos. Trans. R. Soc. A 371, 20120259 (2013). https://doi.org/10.1098/rsta.2012.0259
- 22.R. Aliabadi, M. Moradi, S. Varga, J. Chem. Phys. 144, 074902 (2016). https://doi.org/10.1063/1.4941981
- 23.A. Vrij, Pure Appl. Chem. 48, 471 (1976). https://doi.org/10.1351/pac197648040471
- 24.R. Tuinier, G.J. Fleer, Macromolecules 37, 8754 (2004). https://doi.org/10.1021/ma0485742
- 25.S.M. Oversteegen, R. Roth, J. Chem. Phys. 122, 214502 (2005). https://doi.org/10.1063/1.1908765
- 26.H.H. Wensink, H.N.W. Lekkerkerker, Mol. Phys. 107, 2111 (2009). https://doi.org/10.1080/00268970903160605
- 27.M.A. Bates, D. Frenkel, Phys. Rev. E 57, 4824 (1998). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.57.4824
- 28.M. Marechal, A. Cuetos, B. Martínez-Haya, M. Dijkstra, J. Chem. Phys. 134, 094501 (2011). https://doi.org/10.1063/1.3552951
- 29.R. Tuinier, Adv. Condens. Matter Phys. (2016). https://www.hindawi.com/journals/acmp/2016/5871826/cta/
- 30.R. Tuinier, G.J. Fleer, J. Phys. Chem. B 110, 20540 (2006). https://doi.org/10.1021/jp063650j
- 31.B. Widom, J. Phys. Chem. 77, 2196 (1973). https://doi.org/10.1021/j100637a008
- 32.P.G. Bolhuis, M. Hagen, D. Frenkel, Phys. Rev. E 50, 4880 (1994). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.50.4880
- 33.M. Dijkstra, J.M. Brader, R. Evans, J. Phys.: Condens. Matter 11, 10079 (1999)ADSGoogle Scholar
- 34.K. Akahane, J. Russo, H. Tanaka, Nat. Commun. 7, 12599 (2016). https://doi.org/10.1038/ncomms12599
- 35.V.F.D. Peters, M. Vis, Á. González García, R. Tuinier, in preparation (n.a.a)Google Scholar
- 36.M.A. Bates, D. Frenkel, J. Chem. Phys 110, 6553 (1999). https://doi.org/10.1063/1.478558
- 37.H.H. Wensink, G.J. Vroege, J. Phys.: Condens. Matter 16, S2015 (2004). http://stacks.iop.org/0953-8984/16/i=19/a=013
- 38.H.H. Wensink, H.N.W. Lekkerkerker, Europhys. Lett. 66, 125 (2004). https://doi.org/10.1209/epl/i2003-10140-1
- 39.D. de las Heras, M. Schmidt, Soft Matter 9, 8636 (2013). https://doi.org/10.1039/C3SM51491A
- 40.F.M. van der Kooij, K. Kassapidou, H.N.W. Lekkerkerker, Nature 406, 868 (2000). https://doi.org/10.1038/35022535
- 41.S. Liu, J. Zhang, N. Wang, W. Liu, C. Zhang, D. Sun, Chem. Mater. 15, 3240 (2003). https://doi.org/10.1021/cm034201o
- 42.V.F.D. Peters, M. Vis, H.H. Wensink, R. Tuinier, in preparation (n.a.b)Google Scholar
- 43.H.H. Wensink, Phys. Rev. Lett. 93, 157801 (2004). https://doi.org/10.1103/PhysRevLett.93.157801
- 44.C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus, Phys. Rev. Lett. 73, 752 (1994). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.73.752
- 45.G. Foffi, G.D. McCullagh, A. Lawlor, E. Zaccarelli, K.A. Dawson, F. Sciortino, P. Tartaglia, D. Pini, G. Stell, Phys. Rev. E 65, 031407 (2002). https://doi.org/10.1103/PhysRevE.65.031407
- 46.C. Fernandes, A. Senos, Int. J. Refract. Met. Hard Mater. 29, 405 (2011). http://www.sciencedirect.com/science/article/pii/S0263436811000333
- 47.D. Marenduzzo, K. Finan, P.R. Cook, J. Cell. Biol. 175, 681 (2006). http://jcb.rupress.org/content/175/5/681
- 48.L. Sapir, D. Harries, Bunsen-Mag. 19, 152 (2017). https://scholars.huji.ac.il/danielharries/publications/wisdom-crowd#
- 49.G. van Anders, D. Klotsa, N.K. Ahmed, M. Engel, S.C. Glotzer, Proc. Natl. Acad. Sci. USA 111, E4812 (2014). https://doi.org/10.1073/Proc.Natl.Acad.Sci.U.S.A..1418159111
- 50.M. Dijkstra, in Advances in Chemical Physics, ed. by S.A. Rice, A.R. Dinner, vol. 156 (Wiley, Hoboken, 2014), Chap. 2. https://onlinelibrary.wiley.com/doi/10.1002/9781118949702.ch2
- 51.L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949). https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
- 52.H.H. Wensink, G.J. Vroege, H.N.W. Lekkerkerker, J. Phys. Chem B 105, 10610 (2001). https://doi.org/10.1021/jp0105894
- 53.R. van Roij, Eur. J. Phys. 26, S57 (2005). http://stacks.iop.org/0143-0807/26/i=5/a=S07
- 54.J.D. Parsons, Phys. Rev. A 19, 1225 (1979). https://doi.org/10.1103/PhysRevA.19.1225
- 55.S.-D. Lee, J. Chem. Phys. 87, 4972 (1987). https://doi.org/10.1063/1.452811
- 56.T. Odijk, Macromolecules 19, 2313 (1986). https://doi.org/10.1021/ma00163a001
- 57.J.E. Lennard-Jones, A.F. Devonshire, Proc. R. Soc. A 163, 53 (1937). https://www.jstor.org/stable/97067?seq=1#page_scan_tab_contents
- 58.A.Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987). https://doi.org/10.1080/00268978700101491