Skip to main content

Phase Behaviour of Colloidal Superballs Mixed with Non-adsorbing Polymers

  • Chapter
  • First Online:
Polymer-Mediated Phase Stability of Colloids

Part of the book series: Springer Theses ((Springer Theses))

  • 223 Accesses

Abstract

Inspired by experimental work on colloidal cuboid–polymer dispersions [Rossi et al., Soft Matter, 2011, 7, 4139–4142] we have theoretically studied the phase behaviour of such mixtures. To that end, free volume theory was applied to predict the phase behaviour of mixtures of superballs and non-adsorbing polymer chains in a common solvent. Closed expressions for the thermodynamic properties of a suspension of hard colloidal superballs have been derived, accounting for fluid (F), face centred cubic (FCC) and simple cubic (SC) phase states. Even though these expressions are approximate for the solid phases, the hard superballs phase diagram semi-quantitatively matches with more evolved methods. The theory developed for the cuboid–polymer mixture reveals a rich phase behaviour, which includes not only isostructural F\(_1\)–F\(_2\) coexistence, but also SC\(_1\)–SC\(_2\) coexistence, several triple coexistences, and even a quadruple phase coexistence region (F\(_1\)–F\(_2\)–SC–FCC). The model proposed offers a tool to assess the stability of cuboid–polymer mixtures in terms of the colloid-to-polymer size ratio and superball shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, D.J. Norris, Nature 414, 289 (2001). https://doi.org/10.1038/35104529

  2. J.-M. Meijer, A. Pal, S. Ouhajji, H.N.W. Lekkerkerker, A.P. Philipse, A.V. Petukhov, Nat. Commun. 8, 14352 (2017). https://doi.org/10.1038/ncomms14352

  3. J.W.J. de Folter, E.M. Hutter, S.I.R. Castillo, K.E. Klop, A.P. Philipse, W.K. Kegel, Langmuir 30, 955 (2014). https://doi.org/10.1021/la402427q

  4. B.G. Prevo, E.W. Hon, O.D. Velev, J. Mater. Chem. 17, 791 (2007). https://doi.org/10.1039/B612734G

  5. S.I.R. Castillo, D.M.E. Thies-Weesie, A.P. Philipse, Phys. Rev. E 91, 022311 (2015). https://doi.org/10.1103/PhysRevE.91.022311

  6. L. Rossi, S. Sacanna, W.T.M. Irvine, P.M. Chaikin, D.J. Pine, A.P. Philipse, Soft Matter 7, 4139 (2011). https://doi.org/10.1039/C0SM01246G

  7. J.R. Royer, G.L. Burton, D.L. Blair, S.D. Hudson, Soft Matter 11, 5656 (2015)

    Article  ADS  Google Scholar 

  8. F. Dekker, R. Tuinier, A.P. Philipse, Colloids Interfaces 2, 44 (2018), https://www.mdpi.com/2504-5377/2/4/44

  9. A.H. Barr, IEEE Comput. Graph. Appl. 1, 11 (1981). https://doi.org/10.1109/MCG.1981.1673799

  10. Y. Jiao, F.H. Stillinger, S. Torquato, Phys. Rev. E 79, 041309 (2009). https://doi.org/10.1103/PhysRevE.79.041309

  11. R. Ni, A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, Soft Matter 8, 8826 (2012). https://doi.org/10.1039/C2SM25813G

  12. J.-M. Meijer, F. Hagemans, L. Rossi, D.V. Byelov, S.I. Castillo, A. Snigirev, I. Snigireva, A.P. Philipse, A.V. Petukhov, Langmuir 28, 7631 (2012). https://doi.org/10.1021/la3007052

  13. R.D. Batten, F.H. Stillinger, S. Torquato, Phys. Rev. E 81, 061105 (2010). https://doi.org/10.1103/PhysRevE.81.061105

  14. U. Agarwal F.A. Escobedo, Nat. Mater. 10, 230 (2011). https://doi.org/10.1038/nmat2959

  15. L. Rossi, V. Soni, D.J. Ashton, D.J. Pine, A.P. Philipse, P.M. Chaikin, M. Dijkstra, S. Sacanna, W.T.M. Irvine, Proc. Natl. Acad. Sci. U.S.A. 112, 5286 (2015), https://www.pnas.org/content/112/17/5286?sid=c9bec40f-0b6f-4a2b-baca-636cfc3e3038

  16. S.M. Oversteegen R. Roth, J. Chem. Phys. 122, 214502 (2005). https://doi.org/10.1063/1.1908765

  17. E. Herold, R. Hellmann, J. Wagner, J. Chem. Phys. 147, 204102 (2017). https://doi.org/10.1063/1.5004687

  18. A. Isihara T. Hayashida, J. Phys. Soc. Jpn. 6, 40 (1951). https://doi.org/10.1143/JPSJ.6.40

  19. H. Hadwiger, Experientia 7, 395 (1951). https://doi.org/10.1007/BF02168922

  20. R. Gibbons, Mol. Phys. 17, 81 (1969), https://www.tandfonline.com/doi/abs/10.1080/00268976900100811

  21. T. Boublík, Mol. Phys. 27, 1415 (1974). https://doi.org/10.1080/00268977400101191

  22. T. Boublík, J. Chem. Phys. 63, 4084 (1975). https://doi.org/10.1063/1.431882

  23. T. Boublík, Mol. Phys. 42, 209 (1981), https://www.tandfonline.com/doi/abs/10.1080/00268978100100161

  24. N.F. Carnahan K.E. Starling, J. Chem. Phys. 51, 635 (1969), https://aip.scitation.org/doi/10.1063/1.1672048

  25. J.E. Lennard-Jones, A.F. Devonshire, Proc. R. Soc A 163, 53 (1937), https://www.jstor.org/stable/97067?seq=1#page_scan_tab_contents

  26. M. Baus C.F. Tejero, Equilibrium Statistical Physics, 1st ed. (Springer, Heidelberg, 2008). https://doi.org/10.1007/978-3-540-74632-4

  27. E. Velasco, L. Mederos, G. Navascués, Langmuir 14, 5652 (1998). https://doi.org/10.1021/la980126y

  28. S.K. Kwak, T. Park, Y.-J. Yoon, J.-M. Lee, Mol. Sim. 38, 16 (2012). https://doi.org/10.1080/08927022.2011.597397

  29. H.N.W. Lekkerkerker R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg, 2011)

    Google Scholar 

  30. L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949). https://doi.org/10.1111/j.1749-6632.1949.tb27296.x

  31. A. Cuetos, M. Dennison, A. Masters, A. Patti, Soft Matter 13, 4720 (2017), https://pubs.rsc.org/en/Content/ArticleLanding/2017/SM/C7SM00726D#!divAbstract

  32. F. Smallenburg, L. Filion, M. Marechal, M. Dijkstra, Proc. Natl. Acad. Sci. U.S.A. 109, 17886 (2012), https://www.pnas.org/content/109/44/17886

  33. A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, Phys. Rev. Lett. 111, 015501 (2013), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.015501

  34. W.G. Hoover F.H. Ree, J. Chem. Phys. 49, 3609 (1968), https://aip.scitation.org/doi/10.1063/1.1670641

  35. H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992). https://doi.org/10.1209/0295-5075/20/6/015

  36. M. Dijkstra, R. van Roij, R. Roth, A. Fortini, Phys. Rev. E 73, 041404 (2006), https://journals.aps.org/pre/abstract/10.1103/PhysRevE.73.041404

  37. P.G. Bolhuis, M. Hagen, D. Frenkel, Phys. Rev. E 50, 4880 (1994), https://journals.aps.org/pre/abstract/10.1103/PhysRevE.50.4880

  38. C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus, Phys. Rev. E 51, 558 (1995). https://doi.org/10.1103/PhysRevE.51.558

  39. D.J. Audus, A.M. Hassan, E.J. Garboczi, J.F. Douglas, Soft Matter 11, 3360 (2015). https://doi.org/10.1039/C4SM02869D

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro González García .

Appendices

5.A Superball Properties: Calculation

Superball properties required for the calculation of the second virial coefficient and for the free energy of the solid phases are detailed in this section. The distance \(\mathfrak {r}\) between the centre of a superball and an arbitrary point on the surface of the superball is given by [39]:

$$\begin{aligned} \mathfrak {r}(\theta ,\phi ) = R\left( |\cos {\phi }|^m |\sin {\theta }|^m + |\sin {\phi }|^m |\sin {\theta }|^m + |\cos {\theta }|^m \right) ^{-1/m} \text {,} \end{aligned}$$
(5.21)

where \(\theta \) and \(\phi \) are the polar angle and the azimuthal angle, respectively. The maximum distance (\(\mathfrak {r}_\text {max}\)) between the centre and the surface of the superball is the distance from the centre to the corner, as shown in Fig. 5.1 for the 2D superball projection. The angles corresponding to this maximum distance are \(\theta = \pi /4\) and \(\phi = 0\) for a 2D superball and \(\theta = \arccos {\left( \sqrt{2/3}\right) }\) and \(\phi = \pi /4\) for a 3D superball, which leads to a maximum distance given by:

$$\begin{aligned} \mathfrak {r}^{\mathrm {2D}}_{\mathrm {max}} = \mathfrak {r}\left( \frac{\pi }{4},0\right) = \sqrt{2}R\left( \frac{1}{2}\right) ^{1/m} \text {,} \end{aligned}$$
(5.22)
$$\begin{aligned} \mathfrak {r}^{\mathrm {3D}}_{\mathrm {max}} = \mathfrak {r}\left( \arcsin {\left( \sqrt{2/3}\right) },\frac{\pi }{4}\right) = \sqrt{3}R\left( \frac{1}{3}\right) ^{1/m}\text {.} \end{aligned}$$
(5.23)

The volume of the superball \(v_{\mathrm {c}}\) is obtained by integration of Eq. (5.21) [39]:

$$\begin{aligned} v_\text {c} = \frac{8}{3}\int _0^{\pi /2}\int _0^{\pi /2}\sin {\left( \theta \right) }r(\theta ,\phi )^3\mathrm {d}\theta \mathrm {d}\phi \text {,} \end{aligned}$$
(5.24)

where integration is performed over one octant due to symmetry. Equation (5.24) can be solved analytically, resulting in [5, 11]:

$$\begin{aligned} v_\text {c} = \sigma ^3f(m) \text {,} \end{aligned}$$
(5.25)

with

$$\begin{aligned} f(m) = \frac{\left[ \Gamma (1+1/m)\right] ^3}{\Gamma (1+3/m)} \text {,} \end{aligned}$$
(5.26)

with \(\sigma \) the diameter of the superball (\(\sigma =2R\)) and \(\Gamma \) the Euler Gamma function. Exact equations for the surface area \(s_{\mathrm {sb}}\) and for the mean curvature \(c_{\mathrm {sb}}\) of a superball are not known, but they can be calculated numerically using the surface integral and the integral of mean curvature [39]:

$$\begin{aligned} s_\text {c} = 8\int _0^{\pi /2}\int _0^{\pi /2} \mathrm {d}\theta \mathrm {d}\phi \left|\left|\frac{\partial \vec {x}}{\partial \theta }\times \frac{\partial \vec {x}}{\partial \phi }\right|\right|\text {,} \end{aligned}$$
(5.27)
$$\begin{aligned} \begin{aligned} c_\text {c} =&\frac{8}{4\pi }\int _0^{\pi /2}\int _0^{\pi /2} \mathrm {d}\theta \mathrm {d}\phi \\ {}&\Big \{(\vec {x}_\theta \cdot \vec {x}_\theta )[(\vec {x}_\theta \times \vec {x}_\phi )\cdot \vec {x}_{\phi \phi }]+ (\vec {x}_\phi \cdot \vec {x}_\phi )[(\vec {x}_\theta \times \vec {x}_\phi )\cdot \vec {x}_{\theta \theta }] - \\&2(\vec {x}_\theta \cdot \vec {x}_\phi )[(\vec {x}_\theta \times \vec {x}_\phi )\cdot \vec {x}_{\theta \phi }]\Big \}\times \\ {}&\Big \{2(\vec {x}_\theta \cdot \vec {x}_\theta )(\vec {x}_\phi \cdot \vec {x}_\phi )-2(\vec {x}_\theta \cdot \vec {x}_\phi )^2\Big \}^{-1} \text {,} \end{aligned} \end{aligned}$$
(5.28)

where subscripts denote partial derivatives and \(\vec {x}\) represents a vector from the centre of the superball to the surface, given by:

$$\begin{aligned} \vec {x} = \{\mathfrak {r}(\theta ,\phi )\sin {\theta }\cos {\phi },\mathfrak {r}(\theta ,\phi )\sin {\theta }\sin {\phi },\mathfrak {r}(\theta ,\phi )\cos {\theta }\} \text {,} \end{aligned}$$
(5.29)

with \(\mathfrak {r}\) the distance from the centre of the superball (Eq. (5.21)). In view of the complicated forms of Eqs. (5.28) and (5.29), it is not surprising that formal solutions for the surface and mean curvature of superballs are not available.

5.B Close Packing and Free Volume of FCC and SC Crystals

In this section, clarification on the close packing fraction of the two solid states considered is provided. The general equation for the close packing fraction of a superball crystal is given by:

$$\begin{aligned} \phi _\text {c}^\text {cp} = \frac{N_\text {c} v_\text {c}}{V_\text {UC}^\text {cp}} \text {,} \end{aligned}$$
(5.30)

with \(N_\text {c}\) the number of superballs in the crystal unit cell and \(V_\text {UC}^\text {cp}\) the volume of the unit cell at the close packing fraction.

For the FCC crystal, the number of particles inside the unit cell is 4 and the volume of the unit cell at the close packing fraction is given by:

$$\begin{aligned} V_\text {UC}^\text {FCC,cp}&= \left[ 4\mathfrak {r}_\text {max}^\text {2D}\sin \left( \frac{\pi }{4}\right) \right] ^3 = (4R)^32^{-3/m} \text {,} \end{aligned}$$

which, combined with Eq. (5.30), gives the close packing fraction of superballs in the FCC crystal [Eq. (5.12)]. For the SC crystal, there is only a single particle inside the unit cell and the volume of the unit cell at the close packing fraction is simply given by:

$$\begin{aligned} V_\text {UC}^\text {SC,cp}= (2R)^3 \text {,} \end{aligned}$$
(5.31)

which results in the close packing fraction of superballs in a SC crystal given by Eq. (5.16).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González García, Á. (2019). Phase Behaviour of Colloidal Superballs Mixed with Non-adsorbing Polymers. In: Polymer-Mediated Phase Stability of Colloids. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-33683-7_5

Download citation

Publish with us

Policies and ethics