Skip to main content

Depletion-Driven Solid–Solid Coexistence in Colloid–Polymer Mixtures

  • Chapter
  • First Online:
Polymer-Mediated Phase Stability of Colloids

Part of the book series: Springer Theses ((Springer Theses))

  • 232 Accesses

Abstract

Hard spheres mixed with penetrable hard spheres display an isostructural solid–solid transition. This phase transition is fully driven by the entropy gain of the depletants without invoking explicit pair potentials between the colloidal particles. The solid–solid phase coexistence exists for size ratios \(q\equiv \delta /R \lesssim 0.09\), with \(\delta \) the penetrable hard sphere radius and R the hard sphere radius. This coexistence is revealed using a modified free volume theory, where the free volume fraction for depletants in the solid phase is calculated on geometrical grounds. Due to a better account of the small depletant partitioning, the fluid branch of the fluid–solid coexistence also decreases with decreasing q. Colloid–polymer mixtures are an excellent candidate for the experimental realization of this intricate solid–solid transition, first predicted by Bolhuis and Frenkel for hard spheres with short range pair attractions [PRL 72, 2211–2214 (1994)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Vrij, Pure Appl. Chem. 48, 471 (1976). https://doi.org/10.1351/pac197648040471

  2. G.J. Fleer, R. Tuinier, Adv. Colloid Interface Sci. 143, 1 (2008). https://doi.org/10.1016/j.cis.2008.07.001

  3. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954). https://doi.org/10.1063/1.1740347

  4. S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958). https://doi.org/10.1002/pol.1958.1203312618

  5. A. Fortini, M. Dijkstra, R. Tuinier, J. Phys.: Condens. Matter 17, 7783 (2005), http://stacks.iop.org/0953-8984/17/i=50/a=002

  6. R. Roth, J. Phys.: Condens. Matter 22, 063102 (2010), http://stacks.iop.org/0953-8984/22/i=6/a=063102?key=crossref.e8ded4d3b4b40a58361c21e1fbb1abc0

  7. M. Dijkstra, R. van Roij, R. Roth, A. Fortini, Phys. Rev. E 73, 041404 (2006), https://journals.aps.org/pre/abstract/10.1103/PhysRevE.73.041404

  8. E.J. Meijer, D. Frenkel, J. Chem. Phys. 100, 6873 (1994), https://www.google.com/search?client=firefox-b-ab&q=olloids+dispersed+in+polymer+solutions.+A+computer+simulation+study

  9. J. Jover, A. Galindo, G. Jackson, E.A. Müller, A.J. Haslam, Mol. Phys. 113, 2608 (2015). https://doi.org/10.1080/00268976.2015.1047425

  10. W.G. Hoover, F.H. Ree, J. Chem. Phys. 49, 3609 (1968), https://aip.scitation.org/doi/10.1063/1.1670641

  11. H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg, 2011)

    Google Scholar 

  12. M. Dijkstra, J.M. Brader, R. Evans, J. Phys.: Condens. Matter 11, 10079 (1999)

    Google Scholar 

  13. F.L. Calderon, J. Bibette, J. Biais, Europhys. Lett. 23, 653 (1993), http://stacks.iop.org/0295-5075/23/i=9/a=006

  14. H.N.W. Lekkerkerker, Colloids Surf. 51, 419 (1990), https://www.sciencedirect.com/science/article/abs/pii/016666229080156X

  15. H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992). https://doi.org/10.1209/0295-5075/20/6/015

  16. P.G. Bolhuis, E.J. Meijer, A.A. Louis, Phys. Rev. Lett. 90, 068304 (2003). https://doi.org/10.1103/PhysRevLett.90.068304

  17. A. Moncho-Jordá, A.A. Louis, P.G. Bolhuis, R. Roth, J. Phys.: Condens. Matter 15, S3429 (2003), http://stacks.iop.org/0953-8984/15/i=48/a=004

  18. K.J. Mutch, J.S. van Duijneveldt, J. Eastoe, Soft Matter 3, 155 (2007). https://doi.org/10.1039/B611137H

  19. P.G. Bolhuis, A.A. Louis, J.P. Hansen, E.J. Meijer, J. Chem. Phys. 114, 4296 (2001). https://doi.org/10.1063/1.1344606

  20. R. Piazza, G.D. Pietro, Europhys. Lett. 28, 445 (1994), http://stacks.iop.org/0295-5075/28/i=6/a=012

  21. J. Bibette, D. Roux, F. Nallet, Phys. Rev. Lett. 65, 2470 (1990). https://doi.org/10.1103/PhysRevLett.65.2470

  22. J.A. Barker, D. Henderson, J. Chem. Phys. 47, 4714 (1967). https://doi.org/10.1063/1.1701689

  23. P. Ehrenfest, Commun. Phys. Lab. Univ. Leiden 75b (1933), https://www.lorentz.leidenuniv.nl/IL-publications/Ehrenfest.html

  24. G. Jaeger, Arch. Hist. Exact Sci. 53, 51 (1998), https://link.springer.com/article/10.1007/s004070050021

  25. C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus, Phys. Rev. Lett. 73, 752 (1994), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.73.752

  26. C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus, Phys. Rev. E 51, 558 (1995). https://doi.org/10.1103/PhysRevE.51.558

  27. Z.T. Nemeth, C.N. Likos, J. Phys.: Condens. Matter 7, L537 (1995), http://stacks.iop.org/0953-8984/7/i=41/a=002

  28. C.N. Likos, G. Senatore, J. Phys.: Condens. Matter 7, 6797 (1995), http://stacks.iop.org/0953-8984/7/i=34/a=005

  29. C. Rascón, L. Mederos, G. Navascués, J. Chem. Phys. 103, 9795 (1995). https://doi.org/10.1063/1.469944

  30. G. Foffi, G.D. McCullagh, A. Lawlor, E. Zaccarelli, K.A. Dawson, F. Sciortino, P. Tartaglia, D. Pini, G. Stell, Phys. Rev. E 65, 031407 (2002). https://doi.org/10.1103/PhysRevE.65.031407

  31. P.G. Bolhuis, D. Frenkel, Phys. Rev. Lett. 72, 2211 (1994), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.72.2211

  32. P.G. Bolhuis, M. Hagen, D. Frenkel, Phys. Rev. E 50, 4880 (1994), https://journals.aps.org/pre/abstract/10.1103/PhysRevE.50.4880

  33. M. Dijkstra, R. van Roij, R. Evans, Phys. Rev. Lett. 81, 2268 (1998). https://doi.org/10.1103/PhysRevLett.81.2268

  34. K.N. Pham, A.M. Puertas, J. Bergenholtz, S.U. Egelhaaf, A. Moussaïd, P.N. Pusey, A.B. Schofield, M.E. Cates, M. Fuchs, W.C.K. Poon, Science 296, 104 (2002). https://doi.org/10.1126/science.1068238

  35. E. Zaccarelli, W.C.K. Poon, Proc. Natl. Acad. Sci. USA 106, 15203 (2009), https://www.pnas.org/content/106/36/15203

  36. C.P. Royall, S.R. Williams, H. Tanaka, J. Chem. Phys. 148, 044501 (2018). https://doi.org/10.1063/1.5000263

  37. C. Gögelein, R. Tuinier, Eur. Phys. J. E 27, 171 (2008). https://doi.org/10.1140/epje/i2008-10367-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro González García .

3.A TPT for the AOV Potential

3.A TPT for the AOV Potential

In this short section we describe the approach followed to justify the shift of the fluid–solid (F–S) coexistence towards higher packing fractions upon addition of small depletants. Following standard thermodynamic perturbation theories [22] (previously applied to highly-screened repulsive interactions [37]), we consider an effective sphere of interaction whose diameter \(\sigma '\) is calculated via

$$\begin{aligned} {\sigma '}/{\sigma } = 1 +\int _{1}^{\infty }\text {d}\tilde{r} \left(1-\exp {[-\beta W_\text {AOV} (\tilde{r})]}\right), \end{aligned}$$
(3.15)

with the Asakura–Oosawa–Vrij (AOV) depletion pair potential given as in Eq. (1.2). The integral given in Eq. (3.15) can be solved numerically for all \(\{q,\phi _\text {d}^\text {R}\}\), providing \(\sigma '\). We then map the thermodynamic functions of a pure HS suspension with an effective packing fraction:

$$\begin{aligned} \phi _\text {c}' = (\sigma '/\sigma )^3\phi _\text {c}. \end{aligned}$$

By substituting \(\phi _\text {c} \leftrightarrow \phi _\text {c}'\) on all canonical expressions, calculation of the F–S binodal is straightforward.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González García, Á. (2019). Depletion-Driven Solid–Solid Coexistence in Colloid–Polymer Mixtures. In: Polymer-Mediated Phase Stability of Colloids. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-33683-7_3

Download citation

Publish with us

Policies and ethics