Introduction
Chapter
First Online:
- 136 Downloads
Abstract
In this introduction, we shortly revise the fundamentals of colloidal phase behaviour and set the aim and structure of this thesis. Some emphasis is given to the parts in which this thesis is divided: spherical colloids, anisotropic colloids, and association colloids. Methods that are common to more than one chapter are also presented here to avoid repetition of information through this thesis.
References
- 1.A.P. Philipse, Brownian Motion: Elements of Colloid Dynamics, Undergraduate Lecture Notes in Physics (Springer International Publishing, New York, 2018). www.springer.com/gp/book/9783319980522
- 2.W.C.K. Poon, Science 304, 830 (2004). https://doi.org/10.1126/science.1097964
- 3.A. Einstein, Ann. Phys. 324, 371 (1905). https://doi.org/10.1002/andp.19063240208
- 4.J. Perrin, Ann. Chim. Phys. 18, 5 (1909), http://www.citeulike.org/group/744/article/1059645
- 5.M.D. Haw, J. Phys.: Condens. Matter 14, 7769 (2002). http://stacks.iop.org/0953-8984/14/i=33/a=315
- 6.E.J.W. Verwey, J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948)Google Scholar
- 7.D.H. Everett, Basic Principles of Colloid Science (Royal Society of Chemistry, London, 1988)Google Scholar
- 8.J.N. Israelachvili, Intermolecular and Surface Forces, 3rd edn. (Academic Press, Amsterdam, 2011)Google Scholar
- 9.R.J. Hunter, Foundations of Colloid Science (Oxford University Press, Oxford, 2001)Google Scholar
- 10.A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003). https://doi.org/10.1038/nature01328
- 11.J.A. Lewis, J. Am. Ceram. Soc. 83, 2341 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01560.x
- 12.S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954). https://doi.org/10.1063/1.1740347
- 13.S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958). https://doi.org/10.1002/pol.1958.1203312618
- 14.A. Vrij, Pure Appl. Chem. 48, 471 (1976). https://doi.org/10.1351/pac197648040471
- 15.H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg, 2011)Google Scholar
- 16.A. Mulero, Theory and Simulations of Hard-Sphere Fluids and Related Sytem (Springer, Heidelberg, 2008)Google Scholar
- 17.R.P.A. Dullens, Soft Matter 2, 805 (2006), http://xlink.rsc.org/?DOI=b607017e
- 18.L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949). https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
- 19.D. Frenkel, Phys. A (Amsterdam, Neth.) 263, 26 (1999), https://doi.org/10.1016/S0378-4371(98)00501-9
- 20.G.J. Vroege, H.N.W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992), http://iopscience.iop.org/article/10.1088/0034-4885/55/8/003/pdf
- 21.S. Varga, A. Galindo, G. Jackson, Mol. Phys. 101, 817 (2003). https://doi.org/10.1080/0026897021000037654
- 22.J.A.C. Veerman, D. Frenkel, Phys. Rev. A 45, 5632 (1992), https://journals.aps.org/pra/abstract/10.1103/PhysRevA.45.5632
- 23.A. Haji-Akbari, M. Engel, A.S. Keys, X. Zheng, R.G. Petschek, P. Palffy-Muhoray, S.C. Glotzer, Nature 462, 773 (2009). https://www.nature.com/articles/nature08641
- 24.A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, J. Chem. Phys. 142, 054904 (2015). https://aip.scitation.org/doi/10.1063/1.4906753
- 25.M. Dijkstra, in Advances in Chemical Physics, vol. 156, ed. by S.A. Rice A.R. Dinner (Wiley, NewYork, 2014) Chap. 2. https://onlinelibrary.wiley.com/doi/10.1002/9781118949702.ch2
- 26.G. van Anders, N.K. Ahmed, R. Smith, M. Engel, S.C. Glotzer, ACS Nano 8, 931 (2014). https://pubs.acs.org/doi/10.1021/nn4057353
- 27.A.S. Karas, J. Glaser, S.C. Glotzer, Soft Matter 12, 5199 (2016). https://pubs.rsc.org/en/content/articlelanding/2016/sm/c6sm00620e#!divAbstract
- 28.X. Xing, L. Hua, T. Ngai, Curr. Opin. Colloid Interface Sci. 20, 54 (2015). https://www.sciencedirect.com/science/article/pii/S1359029414001459
- 29.R. Tuinier, S. Ouhajji, P. Linse, Eur. Phys. J. E 39 (2016). https://link.springer.com/article/10.1140
- 30.W.K. Wijting, W. Knoben, N.A.M. Besseling, F.A.M. Leermakers, M.A. Cohen Stuart, Phys. Chem. Chem. Phys. 6, 4432 (2004). https://pubs.rsc.org/en/Content/ArticleLanding/2004/CP/b404030a#!divAbstract
- 31.S. Ouhajji, T. Nylander, L. Piculell, R. Tuinier, P. Linse, A.P. Philipse, Soft Matter 12, 3963 (2016). https://pubs.rsc.org/en/Content/ArticleLanding/2016/SM/C5SM02892B#!divAbstract
- 32.J.B. Hooper, K.S. Schweizer, Macromolecules 39, 5133 (2006). https://pubs.acs.org/doi/10.1021/ma060577m
- 33.J. Gregory, S. Barany, Adv. Colloid Interface Sci. 169, 1 (2011). https://www.sciencedirect.com/science/article/pii/S0001868611001229
- 34.F.A.M. Leermakers, J.C. Eriksson, J. Lyklema, in Soft Colloids, ed. by J. Lyklema. Fundamentals of Interface and Colloid Science, vol. 5 (Academic Press, Cambridge, 2005) Chap. 4. https://www.sciencedirect.com/bookseries/fundamentals-of-interface-and-colloid-science/vol/5/suppl/C
- 35.I. Hamley, Block Copolymers in Solution: Fundamentals and Applications (Wiley, New York, 2005)Google Scholar
- 36.C.B.E. Guerin, I. Szleifer, Langmuir 15, 7901 (1999)CrossRefGoogle Scholar
- 37.Y. Mai, A. Eisenberg, Chem. Soc. Rev. 41, 5969 (2012). https://pubs.rsc.org/en/content/articlelanding/2012/cs/c2cs35115c#!divAbstract
- 38.T. Tadros, Colloids in Paints (Wiley, New York, 2011)Google Scholar
- 39.Y. Tang, Y.-Z. Lin, Y.-G. Li, J. Chem. Phys. 122, 184505 (2005). https://aip.scitation.org/doi/10.1063/1.1895720
- 40.A. Fortini, M. Dijkstra, R. Tuinier, J. Phys.: Condens. Matter 17, 7783 (2005). http://stacks.iop.org/0953-8984/17/i=50/a=002
- 41.M. Dijkstra, R. van Roij, R. Roth, A. Fortini, Phys. Rev. E 73, 041404 (2006). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.73.041404
- 42.C.N. Likos, M. Watzlawek, H. Löwen, Phys. Rev. E 58, 3135 (1998). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.58.3135
- 43.M.L. Kurnaz, J.V. Maher, Phys. Rev. E 55, 572 (1997). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.55.572
- 44.A. Quigley, D. Williams, Eur. J. Pharm. Biopharm. 96, 282 (2015). https://www.sciencedirect.com/science/article/pii/S0939641115003288
- 45.G.A. Vliegenthart, H.N.W. Lekkerkerker, J. Chem. Phys. 112, 5364 (2000). https://aip.scitation.org/doi/10.1063/1.481106
- 46.M.G. Noro, D. Frenkel, J. Chem. Phys. 113, 2941 (2000). https://aip.scitation.org/doi/10.1063/1.1288684
- 47.R. Fantoni, A. Giacometti, A. Santos, J. Chem. Phys. 142, 224905 (2015). https://aip.scitation.org/doi/full/10.1063/1.4922263
- 48.W.G. Hoover, F.H. Ree, J. Chem. Phys. 49, 3609 (1968). https://aip.scitation.org/doi/10.1063/1.1670641
- 49.Y. Tang, B.C. Lu, J. Chem. Phys. 99, 9828 (1993). https://aip.scitation.org/doi/10.1063/1.465465
- 50.R. Tuinier, G.J. Fleer, J. Phys. Chem. B 110, 20540 (2006). https://pubs.acs.org/doi/abs/10.1021/jp063650j
- 51.J.E. Lennard-Jones, A.F. Devonshire, Proc. R. Soc A 163, 53 (1937). https://www.jstor.org/stable/97067?seq=1#page_scan_tab_contents
- 52.N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969). https://aip.scitation.org/doi/10.1063/1.1672048
- 53.D. Frenkel, A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984). https://aip.scitation.org/doi/10.1063/1.448024
- 54.Y.-Z. Lin, Y.-G. Li, J.D. Li, J. Mol. Liq. 125, 29 (2006). https://www.sciencedirect.com/science/article/pii/S0167732205001674
- 55.S. Hlushak, S. Trokhymchuk, I. Nezbeda, Condens. Matter Phys. 14, 33004 (2011). http://www.icmp.lviv.ua/journal/zbirnyk.67/33004/abstract.html
- 56.S. Hlushak, A. Trokhymchuk, Condens. Matter Phys. 15, 23003 (2012). http://www.icmp.lviv.ua/journal/zbirnyk.70/23003/abstract.html
- 57.H.N.W. Lekkerkerker, Colloids Surf. 51, 419 (1990). https://www.sciencedirect.com/science/article/abs/pii/016666229080156X
- 58.H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992). https://doi.org/10.1209/0295-5075/20/6/015
- 59.C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus, Phys. Rev. Lett. 73, 752 (1994). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.73.752
- 60.B. Widom, J. Chem. Phys. 39, 2808 (1963). https://aip.scitation.org/doi/10.1063/1.1734110
- 61.E. Helfand, H. Reiss, H.L. Frisch, J.L. Lebowitz, J. Chem. Phys. 33, 1379 (1960). https://doi.org/10.1063/1.1731417
- 62.J.L. Lebowitz, E. Helfand, E. Praestgaard, J. Chem. Phys. 43, 774 (1965). https://doi.org/10.1063/1.1696842
- 63.V.F.D. Peters, M. Vis, Á. González García, R. Tuinier, in preparation ( n.a.)Google Scholar
- 64.J.M.H.M. Scheutjens, G.J. Fleer, J. Chem. Phys. 83, 1619 (1979). https://pubs.acs.org/doi/abs/10.1021/j100475a012
- 65.J.M.H.M. Scheutjens, G.J. Fleer, J. Chem. Phys. 84, 178 (1980). https://pubs.acs.org/doi/abs/10.1021/j100439a011
- 66.G.J. Fleer, M.A. Cohen Stuart, J.M. H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at interfaces (Springer, Netherlands, 1998) pp. XX, 496Google Scholar
- 67.P.J. Flory, Principles of Polymer Chemistry, The George Fisher Baker Non-Resident Lectureship in Chemistry at Cornell University (Cornell University Press, New York, 1953)Google Scholar
- 68.G.J. Fleer, Adv. Colloid Interface Sci. 159, 99 (2010). https://doi.org/10.1016/j.cis.2010.04.004
- 69.F.A.M. Leermakers, J. Sprakel, N.A.M. Besseling, P.A. Barneveld, Phys. Chem. Chem. Phys. 9, 167 (2006). https://doi.org/10.1039/B613074G
- 70.M.A. Cohen Stuart, F.H. W.H. Waajen, T. Cosgrove, B. Vincent, T.L. Crowley, Macromolecules 17, 1825 (1984). https://pubs.acs.org/doi/abs/10.1021/ma00139a035
- 71.J.M.H.M. Scheutjens, G.J. Fleer, M.A. Cohen Stuart, Colloids Surf. 21, 285 (1986). https://doi.org/10.1016/0166-6622(86)80098-1
- 72.E. Hilz, F.A.M. Leermakers, A.W.P. Vermeer, Phys. Chem. Chem. Phys. 14, 4917 (2012). https://doi.org/10.1039/C2CP40318H
- 73.J. Lyklema, ed., “Appendix 1 - self-consistent field modelling,” in booktitle Soft Colloids, Fundamentals of Interface and Colloid Science, Vol. 5 ( Academic Press, 2005) pp. A1.1 – A1.12http://www.sciencedirect.com/science/article/pii/S1874567905800133
- 74.T.L. Hill, Thermodynamics of Small Systems, Parts I & II, vol. 3 (WILEY-VCH, Germany, 1965). https://doi.org/10.1002/ijch.196500008CrossRefGoogle Scholar
- 75.Y. Lauw, F.A.M. Leermakers, M.A. Cohen Stuart, J. Phys. Chem. B 110, 465 (2006). https://doi.org/10.1021/jp053795a
- 76.R. Feynman, R. Leighton, M. Sands, The Feynman Lectures on Physics, vol. I, Chap. 14 (1965).http://www.feynmanlectures.caltech.edu/I_14.html
- 77.J. Sprakel, N.A.M. Besseling, M.A. Cohen Stuart, F.A.M. Leermakers, Eur. Phys. J. E 25, 163 (2008). http://link.springer.com/10.1140/epje/i2007-10277-1
- 78.A. Kelarakis, V. Havredaki, X.-F. Yuan, Y.-W. Yang, C. Booth, J. Mater. Chem. 13, 2779 (2003). http://xlink.rsc.org/?DOI=B304254E
- 79.A. Ianiro, J. Patterson, Á. González García, M.M.J. van Rijt, M.M.R.M. Hendrix, N.A.J.M. Sommerdijk, I.K. Voets, A.C.C. Esteves, R. Tuinier, J. Polym. Sci., Part B: Polym. Phys. 56, 330 (2018). https://onlinelibrary.wiley.com/doi/full/10.1002/polb.24545
- 80.R. Lund, L. Willner, J. Stellbrink, A. Radulescu, D. Richter, Macromolecules 37, 9984 (2004). http://pubs.acs.org/doi/abs/10.1021/ma035633n
- 81.J.G.J.L. Lebouille, L.F.W. Vleugels, A.A. Dias, F.A.M. Leermakers, M.A. Cohen Stuart, R. Tuinier, Eur. Phys. J. E 36 (2013). http://link.springer.com/10.1140/epje/i2013-13107-y
- 82.R. Wolfram, Mathematica, Version 11.3, ( 2018), note Champaign, ILGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019