Advertisement

Introduction

  • Álvaro González GarcíaEmail author
Chapter
  • 136 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this introduction, we shortly revise the fundamentals of colloidal phase behaviour and set the aim and structure of this thesis. Some emphasis is given to the parts in which this thesis is divided: spherical colloids, anisotropic colloids, and association colloids. Methods that are common to more than one chapter are also presented here to avoid repetition of information through this thesis.

References

  1. 1.
    A.P. Philipse, Brownian Motion: Elements of Colloid Dynamics, Undergraduate Lecture Notes in Physics (Springer International Publishing, New York, 2018). www.springer.com/gp/book/9783319980522
  2. 2.
    W.C.K. Poon, Science 304, 830 (2004).  https://doi.org/10.1126/science.1097964
  3. 3.
    A. Einstein, Ann. Phys. 324, 371 (1905).  https://doi.org/10.1002/andp.19063240208
  4. 4.
    J. Perrin, Ann. Chim. Phys. 18, 5 (1909), http://www.citeulike.org/group/744/article/1059645
  5. 5.
    M.D. Haw, J. Phys.: Condens. Matter 14, 7769 (2002). http://stacks.iop.org/0953-8984/14/i=33/a=315
  6. 6.
    E.J.W. Verwey, J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948)Google Scholar
  7. 7.
    D.H. Everett, Basic Principles of Colloid Science (Royal Society of Chemistry, London, 1988)Google Scholar
  8. 8.
    J.N. Israelachvili, Intermolecular and Surface Forces, 3rd edn. (Academic Press, Amsterdam, 2011)Google Scholar
  9. 9.
    R.J. Hunter, Foundations of Colloid Science (Oxford University Press, Oxford, 2001)Google Scholar
  10. 10.
    A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003). https://doi.org/10.1038/nature01328
  11. 11.
    J.A. Lewis, J. Am. Ceram. Soc. 83, 2341 (2000).  https://doi.org/10.1111/j.1151-2916.2000.tb01560.x
  12. 12.
    S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954).  https://doi.org/10.1063/1.1740347
  13. 13.
    S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958).  https://doi.org/10.1002/pol.1958.1203312618
  14. 14.
    A. Vrij, Pure Appl. Chem. 48, 471 (1976).  https://doi.org/10.1351/pac197648040471
  15. 15.
    H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg, 2011)Google Scholar
  16. 16.
    A. Mulero, Theory and Simulations of Hard-Sphere Fluids and Related Sytem (Springer, Heidelberg, 2008)Google Scholar
  17. 17.
    R.P.A. Dullens, Soft Matter 2, 805 (2006), http://xlink.rsc.org/?DOI=b607017e
  18. 18.
    L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949).  https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
  19. 19.
    D. Frenkel, Phys. A (Amsterdam, Neth.) 263, 26 (1999), https://doi.org/10.1016/S0378-4371(98)00501-9
  20. 20.
    G.J. Vroege, H.N.W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992), http://iopscience.iop.org/article/10.1088/0034-4885/55/8/003/pdf
  21. 21.
    S. Varga, A. Galindo, G. Jackson, Mol. Phys. 101, 817 (2003).  https://doi.org/10.1080/0026897021000037654
  22. 22.
    J.A.C. Veerman, D. Frenkel, Phys. Rev. A 45, 5632 (1992), https://journals.aps.org/pra/abstract/10.1103/PhysRevA.45.5632
  23. 23.
    A. Haji-Akbari, M. Engel, A.S. Keys, X. Zheng, R.G. Petschek, P. Palffy-Muhoray, S.C. Glotzer, Nature 462, 773 (2009). https://www.nature.com/articles/nature08641
  24. 24.
    A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, J. Chem. Phys. 142, 054904 (2015). https://aip.scitation.org/doi/10.1063/1.4906753
  25. 25.
    M. Dijkstra, in Advances in Chemical Physics, vol. 156, ed. by S.A. Rice A.R. Dinner (Wiley, NewYork, 2014) Chap.  2. https://onlinelibrary.wiley.com/doi/10.1002/9781118949702.ch2
  26. 26.
    G. van Anders, N.K. Ahmed, R. Smith, M. Engel, S.C. Glotzer, ACS Nano 8, 931 (2014). https://pubs.acs.org/doi/10.1021/nn4057353
  27. 27.
    A.S. Karas, J. Glaser, S.C. Glotzer, Soft Matter 12, 5199 (2016). https://pubs.rsc.org/en/content/articlelanding/2016/sm/c6sm00620e#!divAbstract
  28. 28.
    X. Xing, L. Hua, T. Ngai, Curr. Opin. Colloid Interface Sci. 20, 54 (2015). https://www.sciencedirect.com/science/article/pii/S1359029414001459
  29. 29.
    R. Tuinier, S. Ouhajji, P. Linse, Eur. Phys. J. E 39 (2016). https://link.springer.com/article/10.1140
  30. 30.
    W.K. Wijting, W. Knoben, N.A.M. Besseling, F.A.M. Leermakers, M.A. Cohen Stuart, Phys. Chem. Chem. Phys. 6, 4432 (2004). https://pubs.rsc.org/en/Content/ArticleLanding/2004/CP/b404030a#!divAbstract
  31. 31.
    S. Ouhajji, T. Nylander, L. Piculell, R. Tuinier, P. Linse, A.P. Philipse, Soft Matter 12, 3963 (2016). https://pubs.rsc.org/en/Content/ArticleLanding/2016/SM/C5SM02892B#!divAbstract
  32. 32.
    J.B. Hooper, K.S. Schweizer, Macromolecules 39, 5133 (2006). https://pubs.acs.org/doi/10.1021/ma060577m
  33. 33.
    J. Gregory, S. Barany, Adv. Colloid Interface Sci. 169, 1 (2011). https://www.sciencedirect.com/science/article/pii/S0001868611001229
  34. 34.
    F.A.M. Leermakers, J.C. Eriksson, J. Lyklema, in Soft Colloids, ed. by J. Lyklema. Fundamentals of Interface and Colloid Science, vol. 5 (Academic Press, Cambridge, 2005) Chap.  4. https://www.sciencedirect.com/bookseries/fundamentals-of-interface-and-colloid-science/vol/5/suppl/C
  35. 35.
    I. Hamley, Block Copolymers in Solution: Fundamentals and Applications (Wiley, New York, 2005)Google Scholar
  36. 36.
    C.B.E. Guerin, I. Szleifer, Langmuir 15, 7901 (1999)CrossRefGoogle Scholar
  37. 37.
    Y. Mai, A. Eisenberg, Chem. Soc. Rev. 41, 5969 (2012). https://pubs.rsc.org/en/content/articlelanding/2012/cs/c2cs35115c#!divAbstract
  38. 38.
    T. Tadros, Colloids in Paints (Wiley, New York, 2011)Google Scholar
  39. 39.
    Y. Tang, Y.-Z. Lin, Y.-G. Li, J. Chem. Phys. 122, 184505 (2005). https://aip.scitation.org/doi/10.1063/1.1895720
  40. 40.
    A. Fortini, M. Dijkstra, R. Tuinier, J. Phys.: Condens. Matter 17, 7783 (2005). http://stacks.iop.org/0953-8984/17/i=50/a=002
  41. 41.
    M. Dijkstra, R. van Roij, R. Roth, A. Fortini, Phys. Rev. E 73, 041404 (2006). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.73.041404
  42. 42.
    C.N. Likos, M. Watzlawek, H. Löwen, Phys. Rev. E 58, 3135 (1998). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.58.3135
  43. 43.
    M.L. Kurnaz, J.V. Maher, Phys. Rev. E 55, 572 (1997). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.55.572
  44. 44.
    A. Quigley, D. Williams, Eur. J. Pharm. Biopharm. 96, 282 (2015). https://www.sciencedirect.com/science/article/pii/S0939641115003288
  45. 45.
    G.A. Vliegenthart, H.N.W. Lekkerkerker, J. Chem. Phys. 112, 5364 (2000). https://aip.scitation.org/doi/10.1063/1.481106
  46. 46.
    M.G. Noro, D. Frenkel, J. Chem. Phys. 113, 2941 (2000). https://aip.scitation.org/doi/10.1063/1.1288684
  47. 47.
    R. Fantoni, A. Giacometti, A. Santos, J. Chem. Phys. 142, 224905 (2015). https://aip.scitation.org/doi/full/10.1063/1.4922263
  48. 48.
    W.G. Hoover, F.H. Ree, J. Chem. Phys. 49, 3609 (1968). https://aip.scitation.org/doi/10.1063/1.1670641
  49. 49.
    Y. Tang, B.C. Lu, J. Chem. Phys. 99, 9828 (1993). https://aip.scitation.org/doi/10.1063/1.465465
  50. 50.
    R. Tuinier, G.J. Fleer, J. Phys. Chem. B 110, 20540 (2006). https://pubs.acs.org/doi/abs/10.1021/jp063650j
  51. 51.
    J.E. Lennard-Jones, A.F. Devonshire, Proc. R. Soc A 163, 53 (1937). https://www.jstor.org/stable/97067?seq=1#page_scan_tab_contents
  52. 52.
    N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969). https://aip.scitation.org/doi/10.1063/1.1672048
  53. 53.
    D. Frenkel, A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984). https://aip.scitation.org/doi/10.1063/1.448024
  54. 54.
    Y.-Z. Lin, Y.-G. Li, J.D. Li, J. Mol. Liq. 125, 29 (2006). https://www.sciencedirect.com/science/article/pii/S0167732205001674
  55. 55.
    S. Hlushak, S. Trokhymchuk, I. Nezbeda, Condens. Matter Phys. 14, 33004 (2011). http://www.icmp.lviv.ua/journal/zbirnyk.67/33004/abstract.html
  56. 56.
    S. Hlushak, A. Trokhymchuk, Condens. Matter Phys. 15, 23003 (2012). http://www.icmp.lviv.ua/journal/zbirnyk.70/23003/abstract.html
  57. 57.
    H.N.W. Lekkerkerker, Colloids Surf. 51, 419 (1990). https://www.sciencedirect.com/science/article/abs/pii/016666229080156X
  58. 58.
    H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992).  https://doi.org/10.1209/0295-5075/20/6/015
  59. 59.
    C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus, Phys. Rev. Lett. 73, 752 (1994). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.73.752
  60. 60.
    B. Widom, J. Chem. Phys. 39, 2808 (1963). https://aip.scitation.org/doi/10.1063/1.1734110
  61. 61.
    E. Helfand, H. Reiss, H.L. Frisch, J.L. Lebowitz, J. Chem. Phys. 33, 1379 (1960).  https://doi.org/10.1063/1.1731417
  62. 62.
    J.L. Lebowitz, E. Helfand, E. Praestgaard, J. Chem. Phys. 43, 774 (1965).  https://doi.org/10.1063/1.1696842
  63. 63.
    V.F.D. Peters, M. Vis, Á. González García, R. Tuinier, in preparation ( n.a.)Google Scholar
  64. 64.
    J.M.H.M. Scheutjens, G.J. Fleer, J. Chem. Phys. 83, 1619 (1979). https://pubs.acs.org/doi/abs/10.1021/j100475a012
  65. 65.
    J.M.H.M. Scheutjens, G.J. Fleer, J. Chem. Phys. 84, 178 (1980). https://pubs.acs.org/doi/abs/10.1021/j100439a011
  66. 66.
    G.J. Fleer, M.A. Cohen Stuart, J.M. H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at interfaces (Springer, Netherlands, 1998) pp. XX, 496Google Scholar
  67. 67.
    P.J. Flory, Principles of Polymer Chemistry, The George Fisher Baker Non-Resident Lectureship in Chemistry at Cornell University (Cornell University Press, New York, 1953)Google Scholar
  68. 68.
    G.J. Fleer, Adv. Colloid Interface Sci. 159, 99 (2010).  https://doi.org/10.1016/j.cis.2010.04.004
  69. 69.
    F.A.M. Leermakers, J. Sprakel, N.A.M. Besseling, P.A. Barneveld, Phys. Chem. Chem. Phys. 9, 167 (2006).  https://doi.org/10.1039/B613074G
  70. 70.
    M.A. Cohen Stuart, F.H. W.H. Waajen, T. Cosgrove, B. Vincent, T.L. Crowley, Macromolecules 17, 1825 (1984). https://pubs.acs.org/doi/abs/10.1021/ma00139a035
  71. 71.
    J.M.H.M. Scheutjens, G.J. Fleer, M.A. Cohen Stuart, Colloids Surf. 21, 285 (1986).  https://doi.org/10.1016/0166-6622(86)80098-1
  72. 72.
    E. Hilz, F.A.M. Leermakers, A.W.P. Vermeer, Phys. Chem. Chem. Phys. 14, 4917 (2012).  https://doi.org/10.1039/C2CP40318H
  73. 73.
    J. Lyklema, ed., “Appendix 1 - self-consistent field modelling,” in booktitle Soft Colloids, Fundamentals of Interface and Colloid Science, Vol.  5 ( Academic Press, 2005) pp. A1.1 – A1.12http://www.sciencedirect.com/science/article/pii/S1874567905800133
  74. 74.
    T.L. Hill, Thermodynamics of Small Systems, Parts I & II, vol. 3 (WILEY-VCH, Germany, 1965).  https://doi.org/10.1002/ijch.196500008CrossRefGoogle Scholar
  75. 75.
    Y. Lauw, F.A.M. Leermakers, M.A. Cohen Stuart, J. Phys. Chem. B 110, 465 (2006).  https://doi.org/10.1021/jp053795a
  76. 76.
    R. Feynman, R. Leighton, M. Sands, The Feynman Lectures on Physics, vol. I, Chap. 14 (1965).http://www.feynmanlectures.caltech.edu/I_14.html
  77. 77.
    J. Sprakel, N.A.M. Besseling, M.A. Cohen Stuart, F.A.M. Leermakers, Eur. Phys. J. E 25, 163 (2008). http://link.springer.com/10.1140/epje/i2007-10277-1
  78. 78.
    A. Kelarakis, V. Havredaki, X.-F. Yuan, Y.-W. Yang, C. Booth, J. Mater. Chem. 13, 2779 (2003). http://xlink.rsc.org/?DOI=B304254E
  79. 79.
    A. Ianiro, J. Patterson, Á. González García, M.M.J. van Rijt, M.M.R.M. Hendrix, N.A.J.M. Sommerdijk, I.K. Voets, A.C.C. Esteves, R. Tuinier, J. Polym. Sci., Part B: Polym. Phys. 56, 330 (2018). https://onlinelibrary.wiley.com/doi/full/10.1002/polb.24545
  80. 80.
    R. Lund, L. Willner, J. Stellbrink, A. Radulescu, D. Richter, Macromolecules 37, 9984 (2004). http://pubs.acs.org/doi/abs/10.1021/ma035633n
  81. 81.
    J.G.J.L. Lebouille, L.F.W. Vleugels, A.A. Dias, F.A.M. Leermakers, M.A. Cohen Stuart, R. Tuinier, Eur. Phys. J. E 36 (2013). http://link.springer.com/10.1140/epje/i2013-13107-y
  82. 82.
    R. Wolfram, Mathematica, Version 11.3, ( 2018), note Champaign, ILGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry and Debye InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations