Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 242 Accesses

Abstract

In this introduction, we shortly revise the fundamentals of colloidal phase behaviour and set the aim and structure of this thesis. Some emphasis is given to the parts in which this thesis is divided: spherical colloids, anisotropic colloids, and association colloids. Methods that are common to more than one chapter are also presented here to avoid repetition of information through this thesis.

All models are wrong, but some are useful.

George E. P. Box

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.P. Philipse, Brownian Motion: Elements of Colloid Dynamics, Undergraduate Lecture Notes in Physics (Springer International Publishing, New York, 2018). www.springer.com/gp/book/9783319980522

  2. W.C.K. Poon, Science 304, 830 (2004). https://doi.org/10.1126/science.1097964

  3. A. Einstein, Ann. Phys. 324, 371 (1905). https://doi.org/10.1002/andp.19063240208

  4. J. Perrin, Ann. Chim. Phys. 18, 5 (1909), http://www.citeulike.org/group/744/article/1059645

  5. M.D. Haw, J. Phys.: Condens. Matter 14, 7769 (2002). http://stacks.iop.org/0953-8984/14/i=33/a=315

  6. E.J.W. Verwey, J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948)

    Google Scholar 

  7. D.H. Everett, Basic Principles of Colloid Science (Royal Society of Chemistry, London, 1988)

    Google Scholar 

  8. J.N. Israelachvili, Intermolecular and Surface Forces, 3rd edn. (Academic Press, Amsterdam, 2011)

    Google Scholar 

  9. R.J. Hunter, Foundations of Colloid Science (Oxford University Press, Oxford, 2001)

    Google Scholar 

  10. A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003). https://doi.org/10.1038/nature01328

  11. J.A. Lewis, J. Am. Ceram. Soc. 83, 2341 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01560.x

  12. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954). https://doi.org/10.1063/1.1740347

  13. S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958). https://doi.org/10.1002/pol.1958.1203312618

  14. A. Vrij, Pure Appl. Chem. 48, 471 (1976). https://doi.org/10.1351/pac197648040471

  15. H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg, 2011)

    Google Scholar 

  16. A. Mulero, Theory and Simulations of Hard-Sphere Fluids and Related Sytem (Springer, Heidelberg, 2008)

    Google Scholar 

  17. R.P.A. Dullens, Soft Matter 2, 805 (2006), http://xlink.rsc.org/?DOI=b607017e

  18. L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949). https://doi.org/10.1111/j.1749-6632.1949.tb27296.x

  19. D. Frenkel, Phys. A (Amsterdam, Neth.) 263, 26 (1999), https://doi.org/10.1016/S0378-4371(98)00501-9

  20. G.J. Vroege, H.N.W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992), http://iopscience.iop.org/article/10.1088/0034-4885/55/8/003/pdf

  21. S. Varga, A. Galindo, G. Jackson, Mol. Phys. 101, 817 (2003). https://doi.org/10.1080/0026897021000037654

  22. J.A.C. Veerman, D. Frenkel, Phys. Rev. A 45, 5632 (1992), https://journals.aps.org/pra/abstract/10.1103/PhysRevA.45.5632

  23. A. Haji-Akbari, M. Engel, A.S. Keys, X. Zheng, R.G. Petschek, P. Palffy-Muhoray, S.C. Glotzer, Nature 462, 773 (2009). https://www.nature.com/articles/nature08641

  24. A.P. Gantapara, J. de Graaf, R. van Roij, M. Dijkstra, J. Chem. Phys. 142, 054904 (2015). https://aip.scitation.org/doi/10.1063/1.4906753

  25. M. Dijkstra, in Advances in Chemical Physics, vol. 156, ed. by S.A. Rice A.R. Dinner (Wiley, NewYork, 2014) Chap.  2. https://onlinelibrary.wiley.com/doi/10.1002/9781118949702.ch2

  26. G. van Anders, N.K. Ahmed, R. Smith, M. Engel, S.C. Glotzer, ACS Nano 8, 931 (2014). https://pubs.acs.org/doi/10.1021/nn4057353

  27. A.S. Karas, J. Glaser, S.C. Glotzer, Soft Matter 12, 5199 (2016). https://pubs.rsc.org/en/content/articlelanding/2016/sm/c6sm00620e#!divAbstract

  28. X. Xing, L. Hua, T. Ngai, Curr. Opin. Colloid Interface Sci. 20, 54 (2015). https://www.sciencedirect.com/science/article/pii/S1359029414001459

  29. R. Tuinier, S. Ouhajji, P. Linse, Eur. Phys. J. E 39 (2016). https://link.springer.com/article/10.1140

  30. W.K. Wijting, W. Knoben, N.A.M. Besseling, F.A.M. Leermakers, M.A. Cohen Stuart, Phys. Chem. Chem. Phys. 6, 4432 (2004). https://pubs.rsc.org/en/Content/ArticleLanding/2004/CP/b404030a#!divAbstract

  31. S. Ouhajji, T. Nylander, L. Piculell, R. Tuinier, P. Linse, A.P. Philipse, Soft Matter 12, 3963 (2016). https://pubs.rsc.org/en/Content/ArticleLanding/2016/SM/C5SM02892B#!divAbstract

  32. J.B. Hooper, K.S. Schweizer, Macromolecules 39, 5133 (2006). https://pubs.acs.org/doi/10.1021/ma060577m

  33. J. Gregory, S. Barany, Adv. Colloid Interface Sci. 169, 1 (2011). https://www.sciencedirect.com/science/article/pii/S0001868611001229

  34. F.A.M. Leermakers, J.C. Eriksson, J. Lyklema, in Soft Colloids, ed. by J. Lyklema. Fundamentals of Interface and Colloid Science, vol. 5 (Academic Press, Cambridge, 2005) Chap.  4. https://www.sciencedirect.com/bookseries/fundamentals-of-interface-and-colloid-science/vol/5/suppl/C

  35. I. Hamley, Block Copolymers in Solution: Fundamentals and Applications (Wiley, New York, 2005)

    Google Scholar 

  36. C.B.E. Guerin, I. Szleifer, Langmuir 15, 7901 (1999)

    Article  Google Scholar 

  37. Y. Mai, A. Eisenberg, Chem. Soc. Rev. 41, 5969 (2012). https://pubs.rsc.org/en/content/articlelanding/2012/cs/c2cs35115c#!divAbstract

  38. T. Tadros, Colloids in Paints (Wiley, New York, 2011)

    Google Scholar 

  39. Y. Tang, Y.-Z. Lin, Y.-G. Li, J. Chem. Phys. 122, 184505 (2005). https://aip.scitation.org/doi/10.1063/1.1895720

  40. A. Fortini, M. Dijkstra, R. Tuinier, J. Phys.: Condens. Matter 17, 7783 (2005). http://stacks.iop.org/0953-8984/17/i=50/a=002

  41. M. Dijkstra, R. van Roij, R. Roth, A. Fortini, Phys. Rev. E 73, 041404 (2006). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.73.041404

  42. C.N. Likos, M. Watzlawek, H. Löwen, Phys. Rev. E 58, 3135 (1998). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.58.3135

  43. M.L. Kurnaz, J.V. Maher, Phys. Rev. E 55, 572 (1997). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.55.572

  44. A. Quigley, D. Williams, Eur. J. Pharm. Biopharm. 96, 282 (2015). https://www.sciencedirect.com/science/article/pii/S0939641115003288

  45. G.A. Vliegenthart, H.N.W. Lekkerkerker, J. Chem. Phys. 112, 5364 (2000). https://aip.scitation.org/doi/10.1063/1.481106

  46. M.G. Noro, D. Frenkel, J. Chem. Phys. 113, 2941 (2000). https://aip.scitation.org/doi/10.1063/1.1288684

  47. R. Fantoni, A. Giacometti, A. Santos, J. Chem. Phys. 142, 224905 (2015). https://aip.scitation.org/doi/full/10.1063/1.4922263

  48. W.G. Hoover, F.H. Ree, J. Chem. Phys. 49, 3609 (1968). https://aip.scitation.org/doi/10.1063/1.1670641

  49. Y. Tang, B.C. Lu, J. Chem. Phys. 99, 9828 (1993). https://aip.scitation.org/doi/10.1063/1.465465

  50. R. Tuinier, G.J. Fleer, J. Phys. Chem. B 110, 20540 (2006). https://pubs.acs.org/doi/abs/10.1021/jp063650j

  51. J.E. Lennard-Jones, A.F. Devonshire, Proc. R. Soc A 163, 53 (1937). https://www.jstor.org/stable/97067?seq=1#page_scan_tab_contents

  52. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969). https://aip.scitation.org/doi/10.1063/1.1672048

  53. D. Frenkel, A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984). https://aip.scitation.org/doi/10.1063/1.448024

  54. Y.-Z. Lin, Y.-G. Li, J.D. Li, J. Mol. Liq. 125, 29 (2006). https://www.sciencedirect.com/science/article/pii/S0167732205001674

  55. S. Hlushak, S. Trokhymchuk, I. Nezbeda, Condens. Matter Phys. 14, 33004 (2011). http://www.icmp.lviv.ua/journal/zbirnyk.67/33004/abstract.html

  56. S. Hlushak, A. Trokhymchuk, Condens. Matter Phys. 15, 23003 (2012). http://www.icmp.lviv.ua/journal/zbirnyk.70/23003/abstract.html

  57. H.N.W. Lekkerkerker, Colloids Surf. 51, 419 (1990). https://www.sciencedirect.com/science/article/abs/pii/016666229080156X

  58. H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992). https://doi.org/10.1209/0295-5075/20/6/015

  59. C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus, Phys. Rev. Lett. 73, 752 (1994). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.73.752

  60. B. Widom, J. Chem. Phys. 39, 2808 (1963). https://aip.scitation.org/doi/10.1063/1.1734110

  61. E. Helfand, H. Reiss, H.L. Frisch, J.L. Lebowitz, J. Chem. Phys. 33, 1379 (1960). https://doi.org/10.1063/1.1731417

  62. J.L. Lebowitz, E. Helfand, E. Praestgaard, J. Chem. Phys. 43, 774 (1965). https://doi.org/10.1063/1.1696842

  63. V.F.D. Peters, M. Vis, Á. González García, R. Tuinier, in preparation ( n.a.)

    Google Scholar 

  64. J.M.H.M. Scheutjens, G.J. Fleer, J. Chem. Phys. 83, 1619 (1979). https://pubs.acs.org/doi/abs/10.1021/j100475a012

  65. J.M.H.M. Scheutjens, G.J. Fleer, J. Chem. Phys. 84, 178 (1980). https://pubs.acs.org/doi/abs/10.1021/j100439a011

  66. G.J. Fleer, M.A. Cohen Stuart, J.M. H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at interfaces (Springer, Netherlands, 1998) pp. XX, 496

    Google Scholar 

  67. P.J. Flory, Principles of Polymer Chemistry, The George Fisher Baker Non-Resident Lectureship in Chemistry at Cornell University (Cornell University Press, New York, 1953)

    Google Scholar 

  68. G.J. Fleer, Adv. Colloid Interface Sci. 159, 99 (2010). https://doi.org/10.1016/j.cis.2010.04.004

  69. F.A.M. Leermakers, J. Sprakel, N.A.M. Besseling, P.A. Barneveld, Phys. Chem. Chem. Phys. 9, 167 (2006). https://doi.org/10.1039/B613074G

  70. M.A. Cohen Stuart, F.H. W.H. Waajen, T. Cosgrove, B. Vincent, T.L. Crowley, Macromolecules 17, 1825 (1984). https://pubs.acs.org/doi/abs/10.1021/ma00139a035

  71. J.M.H.M. Scheutjens, G.J. Fleer, M.A. Cohen Stuart, Colloids Surf. 21, 285 (1986). https://doi.org/10.1016/0166-6622(86)80098-1

  72. E. Hilz, F.A.M. Leermakers, A.W.P. Vermeer, Phys. Chem. Chem. Phys. 14, 4917 (2012). https://doi.org/10.1039/C2CP40318H

  73. J. Lyklema, ed., “Appendix 1 - self-consistent field modelling,” in booktitle Soft Colloids, Fundamentals of Interface and Colloid Science, Vol.  5 ( Academic Press, 2005) pp. A1.1 – A1.12http://www.sciencedirect.com/science/article/pii/S1874567905800133

  74. T.L. Hill, Thermodynamics of Small Systems, Parts I & II, vol. 3 (WILEY-VCH, Germany, 1965). https://doi.org/10.1002/ijch.196500008

    Book  Google Scholar 

  75. Y. Lauw, F.A.M. Leermakers, M.A. Cohen Stuart, J. Phys. Chem. B 110, 465 (2006). https://doi.org/10.1021/jp053795a

  76. R. Feynman, R. Leighton, M. Sands, The Feynman Lectures on Physics, vol. I, Chap. 14 (1965).http://www.feynmanlectures.caltech.edu/I_14.html

  77. J. Sprakel, N.A.M. Besseling, M.A. Cohen Stuart, F.A.M. Leermakers, Eur. Phys. J. E 25, 163 (2008). http://link.springer.com/10.1140/epje/i2007-10277-1

  78. A. Kelarakis, V. Havredaki, X.-F. Yuan, Y.-W. Yang, C. Booth, J. Mater. Chem. 13, 2779 (2003). http://xlink.rsc.org/?DOI=B304254E

  79. A. Ianiro, J. Patterson, Á. González García, M.M.J. van Rijt, M.M.R.M. Hendrix, N.A.J.M. Sommerdijk, I.K. Voets, A.C.C. Esteves, R. Tuinier, J. Polym. Sci., Part B: Polym. Phys. 56, 330 (2018). https://onlinelibrary.wiley.com/doi/full/10.1002/polb.24545

  80. R. Lund, L. Willner, J. Stellbrink, A. Radulescu, D. Richter, Macromolecules 37, 9984 (2004). http://pubs.acs.org/doi/abs/10.1021/ma035633n

  81. J.G.J.L. Lebouille, L.F.W. Vleugels, A.A. Dias, F.A.M. Leermakers, M.A. Cohen Stuart, R. Tuinier, Eur. Phys. J. E 36 (2013). http://link.springer.com/10.1140/epje/i2013-13107-y

  82. R. Wolfram, Mathematica, Version 11.3, ( 2018), note Champaign, IL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro González García .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González García, Á. (2019). Introduction. In: Polymer-Mediated Phase Stability of Colloids. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-33683-7_1

Download citation

Publish with us

Policies and ethics