Skip to main content

A Neural-Symbolic Architecture for Inverse Graphics Improved by Lifelong Meta-learning

  • Conference paper
  • First Online:
Book cover Pattern Recognition (DAGM GCPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11824))

Included in the following conference series:

Abstract

We follow the idea of formulating vision as inverse graphics and propose a new type of element for this task, a neural-symbolic capsule. It is capable of de-rendering a scene into semantic information feed-forward, as well as rendering it feed-backward. An initial set of capsules for graphical primitives is obtained from a generative grammar and connected into a full capsule network. Lifelong meta-learning continuously improves this network’s detection capabilities by adding capsules for new and more complex objects it detects in a scene using few-shot learning. Preliminary results demonstrate the potential of our novel approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battaglia, P., Pascanu, R., Lai, M., Rezende, D.J., Kavukcuoglu, K.: Interaction networks for learning about objects, relations and physics. In: NIPS (2016)

    Google Scholar 

  2. Battaglia, P.W., Hamrick, J.B., Tenenbaum, J.B.: Simulation as an engine of physical scene understanding. Proc. Nat. Acad. Sci. 110(45), 18327–18332 (2013)

    Article  Google Scholar 

  3. Hamrick, J.B., Ballard, A.J., Pascanu, R., Vinyals, O., Heess, N., Battaglia, P.W.: Metacontrol for adaptive imagination-based optimization. In: ICLR (2017)

    Google Scholar 

  4. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 44–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_6

    Chapter  Google Scholar 

  5. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: ICLR (2018)

    Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  7. Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.B.: Deep convolutional inverse graphics network. In: NIPS (2015)

    Google Scholar 

  8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  9. Lenssen, J.E., Fey, M., Libuschewski, P.: Group equivariant capsule networks. In: NIPS (2018)

    Google Scholar 

  10. Lipton, Z.C.: The mythos of model interpretability. CoRR abs/1606.03490 (2017)

    Google Scholar 

  11. Liu, Y., Wu, Z., Ritchie, D., Freeman, W.T., Tenenbaum, J.B., Wu, J.: Learning to describe scenes with programs. In: ICLR (2019)

    Google Scholar 

  12. Liu, Z., Freeman, W.T., Tenenbaum, J.B., Wu, J.: Physical primitive decomposition. In: ECCV (2018)

    Google Scholar 

  13. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: CVPR, pp. 5188–5196 (2015)

    Google Scholar 

  14. Mao, J., Gan, C., Kohli, P., Tenenbaum, J.B., Wu, J.: The neuro-symbolic concept learner: interpreting scenes, words, and sentences from natural supervision. In: ICLR (2019)

    Google Scholar 

  15. Martinovic, A., Gool, L.V.: Bayesian grammar learning for inverse procedural modeling. In: CVPR (2013)

    Google Scholar 

  16. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  17. Pharr, M., Humphreys, G., Jakob, W.: Physically Based Rendering, 3rd edn. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  18. Quílez, I.: Rendering signed distance fields (2017). http://www.iquilezles.org

  19. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” explaining the predictions of any classifier. In: Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  20. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: NIPS (2017)

    Google Scholar 

  21. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv:1312.6034 (2014)

  22. Godot Engine Team: Godot engine (2019). https://godotengine.org

  23. Tian, Y., et al.: Learning to infer and execute 3D shape programs. In: ICLR (2019)

    Google Scholar 

  24. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural networks. Mach. Learn. 13(1), 71–101 (1993)

    Google Scholar 

  25. Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artif. Intell. 70(1), 119–165 (1994)

    Article  Google Scholar 

  26. Tulsiani, S., Su, H., Guibas, L.J., Efros, A.A., Malik, J.: Learning shape abstractions by assembling volumetric primitives. In: CVPR (2017)

    Google Scholar 

  27. Ullman, T.D., Spelke, E., Battaglia, P., Tenenbaum, J.B.: Mind games: game engines as an architecture for intuitive physics. Trends Cogn. Sci. 21(9), 649–665 (2017)

    Article  Google Scholar 

  28. Wu, J., Tenenbaum, J.B., Kohli, P.: Neural scene de-rendering. In: CVPR (2017)

    Google Scholar 

  29. Yao, S., et al.: 3D-aware scene manipulation via inverse graphics. In: NIPS (2018)

    Google Scholar 

  30. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.B.: Neural-symbolic VQA: disentangling reasoning from vision and language understanding. In: NIPS (2018)

    Google Scholar 

  31. Zhang, Q., Wu, Y.N., Zhu, S.C.: Interpretable convolutional neural networks. In: CVPR, pp. 8827–8836 (2018)

    Google Scholar 

  32. Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3D point-capsule networks. arXiv:1812.10775 (2018)

  33. Zhou, Y., Zhu, Z., Bai, X., Lischinski, D., Cohen-Or, D., Huang, H.: Non-stationary texture synthesis by adversarial expansion. In: SIGGRAPH (2018)

    Google Scholar 

  34. Zou, C., Yumer, E., Yang, J., Ceylan, D., Hoiem, D.: 3D-PRNN: generating shape primitives with recurrent neural networks. In: ICCV (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kissner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kissner, M., Mayer, H. (2019). A Neural-Symbolic Architecture for Inverse Graphics Improved by Lifelong Meta-learning. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33676-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33675-2

  • Online ISBN: 978-3-030-33676-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics