Skip to main content

Simultaneous Semantic Segmentation and Outlier Detection in Presence of Domain Shift

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11824))

Included in the following conference series:

Abstract

Recent success on realistic road driving datasets has increased interest in exploring robust performance in real-world applications. One of the major unsolved problems is to identify image content which can not be reliably recognized with a given inference engine. We therefore study approaches to recover a dense outlier map alongside the primary task with a single forward pass, by relying on shared convolutional features. We consider semantic segmentation as the primary task and perform extensive validation on WildDash val (inliers), LSUN val (outliers), and pasted objects from Pascal VOC 2007 (outliers). We achieve the best validation performance by training to discriminate inliers from pasted ImageNet-1k content, even though ImageNet-1k contains many road-driving pixels, and, at least nominally, fails to account for the full diversity of the visual world. The proposed two-head model performs comparably to the C-way multi-class model trained to predict uniform distribution in outliers, while outperforming several other validated approaches. We evaluate our best two models on the WildDash test dataset and set a new state of the art on the WildDash benchmark.

P. Bevandić—This work has been partially supported by Croatian Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Courville, A.C., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  2. Bevandic, P., Kreso, I., Orsic, M., Segvic, S.: Discriminative out-of-distribution detection for semantic segmentation. CoRR abs/1808.07703 (2018)

    Google Scholar 

  3. Blum, H., Sarlin, P., Nieto, J.I., Siegwart, R., Cadena, C.: The Fishyscapes benchmark: measuring blind spots in semantic segmentation. CoRR abs/1904.03215

    Google Scholar 

  4. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2019)

    Google Scholar 

  5. Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and recognition using structure from motion point clouds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 44–57. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_5

    Chapter  Google Scholar 

  6. Bulò, S.R., Porzi, L., Kontschieder, P.: In-place activated BatchNorm for memory-optimized training of DNNs. CoRR, abs/1712.02616, December 5 2017

    Google Scholar 

  7. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997). https://doi.org/10.1023/A:1007379606734

    Article  MathSciNet  Google Scholar 

  8. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  9. Cordts, M., et al.: The cityscapes dataset. In: CVPRW (2015)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  11. DeVries, T., Taylor, G.W.: Learning confidence for out-of-distribution detection in neural networks. CoRR abs/1802.04865 (2018)

    Google Scholar 

  12. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV, pp. 2650–2658 (2015)

    Google Scholar 

  13. Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput, Vision (2010)

    Book  Google Scholar 

  14. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32, 1231–1237 (2013)

    Article  Google Scholar 

  15. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  16. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML, pp. 1321–1330 (2017)

    Google Scholar 

  17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23

    Chapter  Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  20. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: ICLR (2017)

    Google Scholar 

  21. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. In: ICLR (2019)

    Google Scholar 

  22. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  23. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NIPS, pp. 5574–5584 (2017)

    Google Scholar 

  24. Kong, S., Fowlkes, C.: Pixel-wise attentional gating for parsimonious pixel labeling. arxiv 1805.01556 (2018)

    Google Scholar 

  25. Kreso, I., Krapac, J., Segvic, S.: Ladder-style DenseNets for semantic segmentation of large natural images. In: ICCV CVRSUAD 2017, pp. 238–245 (2017)

    Google Scholar 

  26. Kreso, I., Krapac, J., Segvic, S.: Efficient ladder-style DenseNets for semantic segmentation of large images. CoRR abs/1905.05661 (2019)

    Google Scholar 

  27. Kreso, I., Orsic, M., Bevandic, P., Segvic, S.: Robust semantic segmentation with ladder-DenseNet models. CoRR abs/1806.03465 (2018)

    Google Scholar 

  28. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NIPS, pp. 6402–6413 (2017)

    Google Scholar 

  29. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. In: ICLR (2018)

    Google Scholar 

  30. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: NeurIPS (2018)

    Google Scholar 

  31. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: ICLR (2018)

    Google Scholar 

  32. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: CVPR, pp. 936–944 (2017)

    Google Scholar 

  33. Meletis, P., Dubbelman, G.: Training of convolutional networks on multiple heterogeneous datasets for street scene semantic segmentation. In: IV (2018)

    Google Scholar 

  34. Nalisnick, E.T., Matsukawa, A., Teh, Y.W., Görür, D., Lakshminarayanan, B.: Do deep generative models know what they don’t know? In: ICLR (2019)

    Google Scholar 

  35. Neuhold, G., Ollmann, T., Bulò, S.R., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: ICCV (2017)

    Google Scholar 

  36. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Y. Ng, A.: Multimodal deep learning. In: ICML, pp. 689–696 (2011)

    Google Scholar 

  37. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: CVPR, pp. 3379–3388 (2018)

    Google Scholar 

  38. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2013)

    Article  Google Scholar 

  39. Shafaei, A., Schmidt, M., Little, J.J.: Does your model know the digit 6 is not a cat? a less biased evaluation of “outlier” detectors. CoRR abs/1809.04729 (2018)

    Google Scholar 

  40. Smith, L., Gal, Y.: Understanding measures of uncertainty for adversarial example detection. In: UAI, abs/1803.08533 (2018)

    Google Scholar 

  41. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR, June 2011. https://doi.org/10.1109/CVPR.2011.5995347

  42. Vyas, A., Jammalamadaka, N., Zhu, X., Das, D., Kaul, B., Willke, T.L.: Out-of-distribution detection using an ensemble of self supervised leave-out classifiers. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 560–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_34

    Chapter  Google Scholar 

  43. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: CVPR (2017)

    Google Scholar 

  44. Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. CoRR abs/1506.03365 (2015)

    Google Scholar 

  45. Zamir, A.R., Sax, A., Shen, W.B., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: CVPR (2018)

    Google Scholar 

  46. Zendel, O., Honauer, K., Murschitz, M., Steininger, D., Domínguez, G.F.: WildDash - creating hazard-aware benchmarks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 407–421. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_25

    Chapter  Google Scholar 

  47. Zendel, O., Murschitz, M., Humenberger, M., Herzner, W.: How good is my test data? introducing safety analysis for computer vision. Int. J. Comput. Vis. 125(1–3), 95–109 (2017)

    Article  MathSciNet  Google Scholar 

  48. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Bevandić .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4335 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bevandić, P., Krešo, I., Oršić, M., Šegvić, S. (2019). Simultaneous Semantic Segmentation and Outlier Detection in Presence of Domain Shift. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33676-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33675-2

  • Online ISBN: 978-3-030-33676-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics