Skip to main content

Deep Archetypal Analysis

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2019)

Abstract

Deep Archetypal Analysis (DeepAA) generates latent representations of high-dimensional datasets in terms of intuitively understandable basic entities called archetypes. The proposed method extends linear Archetypal Analysis (AA), an unsupervised method to represent multivariate data points as convex combinations of extremal data points. Unlike the original formulation, Deep AA is generative and capable of handling side information. In addition, our model provides the ability for data-driven representation learning which reduces the dependence on expert knowledge. We empirically demonstrate the applicability of our approach by exploring the chemical space of small organic molecules. In doing so, we employ the archetype constraint to learn two different latent archetype representations for the same dataset, with respect to two chemical properties. This type of supervised exploration marks a distinct starting point and let us steer de novo molecular design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that \(i=1..m\) (and not up to n), which reflects that deep neural networks usually require batch-wise training with batch size m.

References

  1. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. CoRR abs/1612.00410 (2016). http://arxiv.org/abs/1612.00410

  2. Atkins, P., de Paula, J.: Atkins’ Physical Chemistry. OUP, Oxford (2010)

    Google Scholar 

  3. Bauckhage, C., Manshaei, K.: Kernel archetypal analysis for clustering web search frequency time series. In: 22nd International Conference on Pattern Recognition, pp. 1544–1549, August 2014. https://doi.org/10.1109/ICPR.2014.274

  4. Bauckhage, C., Kersting, K., Hoppe, F., Thurau, C.: Archetypal analysis as an autoencoder. In: Workshop New Challenges in Neural Computation 2015, pp. 8–16, October 2015. https://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_03_2015.pdf

  5. Bauckhage, C., Thurau, C.: Making archetypal analysis practical. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 272–281. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03798-6_28

    Chapter  Google Scholar 

  6. Cabeza, L.F., et al.: Lithium in thermal energy storage: a state-of-the-art review. Renew. Sustain. Energy Rev. 42, 1106–1112 (2015)

    Article  Google Scholar 

  7. Canhasi, E., Kononenko, I.: Weighted hierarchical archetypal analysis for multi-document summarization. Comput. Speech Lang. 37 (2015). https://doi.org/10.1016/j.csl.2015.11.004

  8. Cutler, A., Breiman, L.: Archetypal analysis. Technometrics 36(4), 338–347 (1994). https://doi.org/10.1080/00401706.1994.10485840. http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/379.pdf

    Article  MathSciNet  MATH  Google Scholar 

  9. van Dijk, D., Burkhardt, D., Amodio, M., Tong, A., Wolf, G., Krishnaswamy, S.: Finding archetypal spaces for data using neural networks. arXiv preprint arXiv:1901.09078 (2019)

  10. Chan, B.H.P., Mitchell, D., Cram, L.: Archetypal analysis of galaxy spectra. Mon. Not. Roy. Astron. Soc. 338 (2003). https://doi.org/10.1046/j.1365-8711.2003.06099.x

  11. Hart, Y., et al.: Inferring biological tasks using pareto analysis of high-dimensional data. Nat. Methods 12(3), 233 (2015)

    Article  Google Scholar 

  12. Hou, X., Shen, L., Sun, K., Qiu, G.: Deep feature consistent variational autoencoder. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1133–1141. IEEE (2017)

    Google Scholar 

  13. Huggins, P., Pachter, L., Sturmfels, B.: Toward the human genotope. Bull. Math. Biol. 69(8), 2723–2735 (2007). https://doi.org/10.1007/s11538-007-9244-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-Softmax. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  15. Kaufmann, D., Keller, S., Roth, V.: Copula archetypal analysis. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 117–128. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24947-6_10

    Chapter  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. abs/1412.6980 (2014)

    Google Scholar 

  17. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning with deep generative models. In: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, 8–13 December 2014, Montreal, pp. 3581–3589 (2014)

    Google Scholar 

  18. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. CoRR abs/1312.6114 (2013)

    Google Scholar 

  19. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  20. Mørup, M., Hansen, L.K.: Archetypal analysis for machine learning and data mining. Neurocomputing 80, 54–63 (2012)

    Article  Google Scholar 

  21. Parbhoo, S., Wieser, M., Roth, V.: Causal deep information bottleneck. arXiv e-prints arXiv:1807.02326, July 2018

  22. Prabhakaran, S., Raman, S., Vogt, J.E., Roth, V.: Automatic model selection in archetype analysis. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM 2012. LNCS, vol. 7476, pp. 458–467. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32717-9_46

    Chapter  Google Scholar 

  23. Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1 (2014)

    Google Scholar 

  24. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 1530–1538. PMLR, Lille, 07–09 July 2015

    Google Scholar 

  25. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models 32(2), 1278–1286 (2014)

    Google Scholar 

  26. Ruddigkeit, L., van Deursen, R., Blum, L.C., Reymond, J.L.: Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52(11), 2864–2875 (2012). https://doi.org/10.1021/ci300415d. pMID: 23088335

    Article  Google Scholar 

  27. Seth, S., Eugster, M.J.A.: Probabilistic archetypal analysis. Mach. Learn. 102(1), 85–113 (2016). https://doi.org/10.1007/s10994-015-5498-8

    Article  MathSciNet  MATH  Google Scholar 

  28. Shoval, O., et al.: Evolutionary trade-offs, pareto optimality, and thegeometry of phenotype space. Science 336(6085), 1157–1160 (2012). https://doi.org/10.1126/science.1217405. http://science.sciencemag.org/content/336/6085/1157

    Article  Google Scholar 

  29. Steinbeck, C., Han, Y.Q., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.: The Chemistry Development Kit (CDK): an open-source Java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci. 43(2), 493–500 (2003)

    Article  Google Scholar 

  30. Tinoco, I.: Physical Chemistry: Principles and Applications in Biological Sciences. No. S. 229-313 in Physical Chemistry: Principles and Applications in Biological Sciences. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  31. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv preprint arXiv:physics/0004057 (2000)

  32. Wieczorek, A., Wieser, M., Murezzan, D., Roth, V.: Learning sparse latent representations with the deep copula information bottleneck. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  33. Wynen, D., Schmid, C., Mairal, J.: Unsupervised learning of artistic styles with archetypal style analysis. In: Advances in Neural Information Processing Systems, pp. 6584–6593 (2018)

    Google Scholar 

Download references

Acknowledgements

S. Keller is partially supported by the Swiss National Science Foundation project CR32I2 159682. M. Samarin is supported by the Swiss National Science Foundation grant 407540 167333 as part of the Swiss National Research Programme NRP 75 “Big Data”. M. Wieser is partially supported by the NCCR MARVEL, funded by the Swiss National Science Foundation and SNSF grant 51MRP0158328 (SystemsX.ch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Mathias Keller .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 1271 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keller, S.M., Samarin, M., Wieser, M., Roth, V. (2019). Deep Archetypal Analysis. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33676-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33675-2

  • Online ISBN: 978-3-030-33676-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics