Skip to main content

Learned Collaborative Stereo Refinement

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2019)

Abstract

In this work, we propose a learning-based method to denoise and refine disparity maps of a given stereo method. The proposed variational network arises naturally from unrolling the iterates of a proximal gradient method applied to a variational energy defined in a joint disparity, color, and confidence image space. Our method allows to learn a robust collaborative regularizer leveraging the joint statistics of the color image, the confidence map and the disparity map. Due to the variational structure of our method, the individual steps can be easily visualized, thus enabling interpretability of the method. We can therefore provide interesting insights into how our method refines and denoises disparity maps. The efficiency of our method is demonstrated by the publicly available stereo benchmarks Middlebury 2014 and Kitti 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pytorch.org.

References

  1. Barron, J.T., Poole, B.: The fast bilateral solver. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 617–632. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_38

    Chapter  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  3. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5410–5418 (2018)

    Google Scholar 

  6. Chen, Y., Yu, W., Pock, T.: On learning optimized reaction diffusion processes for effective image restoration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5261–5269 (2015)

    Google Scholar 

  7. Gidaris, S., Komodakis, N.: Detect, replace, refine: deep structured prediction for pixel wise labeling. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5248–5257 (2017)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  9. Hu, X., Mordohai, P.: A quantitative evaluation of confidence measures for stereo vision. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2121–2133 (2012)

    Article  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Knöbelreiter, P., Reinbacher, C., Shekhovtsov, A., Pock, T.: End-to-end training of hybrid CNN-CRF models for stereo. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2339–2348 (2017)

    Google Scholar 

  12. Kobler, E., Klatzer, T., Hammernik, K., Pock, T.: Variational networks: connecting variational methods and deep learning. In: Roth, V., Vetter, T. (eds.) GCPR 2017. LNCS, vol. 10496, pp. 281–293. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66709-6_23

    Chapter  Google Scholar 

  13. Kuschk, G., Cremers, D.: Fast and accurate large-scale stereo reconstruction using variational methods. In: IEEE International Conference on Computer Vision Workshop, pp. 700–707 (2013)

    Google Scholar 

  14. Liang, Z., et al.: Learning for disparity estimation through feature constancy. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2811–2820 (2018)

    Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  16. Maurer, D., Stoll, M., Bruhn, A.: Order-adaptive and illumination-aware variational optical flow refinement. In: British Machine Vision Conference (2017)

    Google Scholar 

  17. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3061–3070 (2015)

    Google Scholar 

  18. Pang, J., Sun, W., Ren, J.S., Yang, C., Yan, Q.: Cascade residual learning: a two-stage convolutional neural network for stereo matching. In: IEEE International Conference on Computer Vision Workshop, pp. 887–895 (2017)

    Google Scholar 

  19. Parikh, N., Boyd, S., et al.: Proximal algorithms. Found. Trends Optim. 1, 127–239 (2014)

    Article  Google Scholar 

  20. Ranftl, R., Gehrig, S., Pock, T., Bischof, H.: Pushing the limits of stereo using variational stereo estimation. In: IEEE Intelligent Vehicles Symposium, pp. 401–407 (2012)

    Google Scholar 

  21. Ranftl, R., Bredies, K., Pock, T.: Non-local total generalized variation for optical flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 439–454. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_29

    Chapter  Google Scholar 

  22. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: edge-preserving interpolation of correspondences for optical flow. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1164–1172 (2015)

    Google Scholar 

  23. Riegler, G., Rüther, M., Bischof, H.: ATGV-Net: accurate depth super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 268–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_17

    Chapter  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82, 205 (2009)

    Article  Google Scholar 

  26. Scharstein, D., et al.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 31–42. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_3

    Chapter  Google Scholar 

  27. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)

    Article  Google Scholar 

  28. Shekhovtsov, A., Reinbacher, C., Graber, G., Pock, T.: Solving dense image matching in real-time using discrete-continuous optimization. In: Computer Vision Winter Workshop (2016)

    Google Scholar 

  29. Tulyakov, S., Ivanov, A., Fleuret, F.: Practical deep stereo (pds): toward applications-friendly deep stereo matching. In: Proceedings of Advances in Neural Information Processing Systems, pp. 5871–5881 (2018)

    Google Scholar 

  30. Vogel, C., Knöbelreiter, P., Pock, T.: Learning energy based inpainting for optical flow. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 340–356. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_22

    Chapter  Google Scholar 

  31. Vogel, C., Pock, T.: A primal dual network for low-level vision problems. In: German Conference on Pattern Recognition (GCPR) (2017)

    Google Scholar 

  32. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: German Conference on Pattern Recognition (GCPR) (2007)

    Google Scholar 

  33. Žbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res. 17, 1–32 (2016)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partly supported from the ERC starting grant HOMOVIS (No. 640156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Knöbelreiter .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18130 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Knöbelreiter, P., Pock, T. (2019). Learned Collaborative Stereo Refinement. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33676-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33675-2

  • Online ISBN: 978-3-030-33676-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics