Skip to main content

Abstract

As a powerful tool for topological data analysis, persistent homology captures topological structures of data in a robust manner. Its pertinent information is summarized in a persistence diagram, which records topological structures, as well as their saliency. Recent years have witnessed an increased interest of persistent homology in various domains. In biomedical image analysis, persistent homology has been applied to brain images, neuron images, cardiac images and cancer pathology images. Meanwhile, the computation of persistent homology could be time-consuming due to column operations over a large matrix, called the boundary matrix. This paper seeks to accelerate persistent homology computation with a hardware implementation of the column operations of the boundary matrix. By designing a dedicated hardware to process fast matrix reduction, the proposed hardware accelerator could potentially achieve up to 20k–30k times speed-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 386–397. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02498-6_32

    Chapter  Google Scholar 

  2. Chung, M., Hanson, J., Ye, J., Davidson, R., Pollak, S.: Persistent homology in sparse regression and its application to brain morphometry. IEEE Trans. Med. Imaging 34(9), 1928–1939 (2015). https://doi.org/10.1109/TMI.2015.2416271

    Article  Google Scholar 

  3. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  Google Scholar 

  4. Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear time. In: Proceedings of the Twenty-second Annual Symposium on Computational Geometry, SCG 2006, pp. 119–126. ACM, New York (2006). https://doi.org/10.1145/1137856.1137877

  5. Deng, C., Liao, S., Xie, Y., Parhi, K.K., Qian, X., Yuan, B.: PermDNN: efficient compressed DNN architecture with permuted diagonal matrices. In: 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 189–202, October 2018. https://doi.org/10.1109/MICRO.2018.00024

  6. Deng, C., Sun, F., Qian, X., Lin, J., Wang, Z., Yuan, B.: TIE: energy-efficient tensor train-based inference engine for deep neural network. In: Proceedings of the 46th International Symposium on Computer Architecture, ISCA 2019, pp. 264–278. ACM, New York (2019). https://doi.org/10.1145/3307650.3322258

  7. Dey, T.K., Li, K., Sun, J., Cohen-Steiner, D.: Computing geometry-aware handle and tunnel loops in 3D models. In: ACM SIGGRAPH 2008 Papers, pp. 45:1–45:9. ACM, New York (2008). https://doi.org/10.1145/1399504.1360644

  8. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002). https://doi.org/10.1007/s00454-002-2885-2

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelsbrunner, H.: Surface tiling with differential topology. In: Desbrun, M., Pottmann, H. (eds.) Eurographics Symposium on Geometry Processing 2005. The Eurographics Association (2005). https://doi.org/10.2312/SGP/SGP05/009-011

  10. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  11. Ghrist, R., Muhammad, A.: Coverage and hole-detection in sensor networks via homology. In: IPSN 2005: Fourth International Symposium on Information Processing in Sensor Networks, pp. 254–260, April 2005. https://doi.org/10.1109/IPSN.2005.1440933

  12. Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational Geometry. CRC Press, Inc., Boca Raton (1997)

    MATH  Google Scholar 

  13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  14. Lee, H., Kang, H., Chung, M.K., Lee, D.S.: Persistent brain network homology from the perspective of dendrogram. IEEE Trans. Med. Imaging 31, 2267–2277 (2012)

    Article  Google Scholar 

  15. Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2003–2010, June 2014. https://doi.org/10.1109/CVPR.2014.257

  16. Munkres, J.R.: Elements of Algebraic Topology. Addison Wesley Publishing Company (1984). http://www.worldcat.org/isbn/0201045869

  17. Oudot, S.: Persistence theory - from quiver representations to data analysis. In: Mathematical Surveys and Monographs (2015)

    Google Scholar 

  18. Perea, J.A., Harer, J.: Sliding windows and persistence: an application of topological methods to signal analysis. Found. Comput. Math. 15, 799–838 (2015)

    Article  MathSciNet  Google Scholar 

  19. Silva, V.D., Ghrist, R.: Blind swarms for coverage in 2-D. In: Proceedings of Robotics: Science and Systems, p. 01 (2005)

    Google Scholar 

  20. Suckling, J.: The mammographic image analysis society digital mammogram database. Exerpta Medica. International Congress Series 1069, January 1994

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by National Science Foundation Awards CCF-1854742, CCF-1815699, IIS-1855759 and CCF-1855760.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, F., Deng, C., Yuan, B., Chen, C. (2019). Hardware Acceleration of Persistent Homology Computation. In: Zhou, L., et al. Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention. LABELS HAL-MICCAI CuRIOUS 2019 2019 2019. Lecture Notes in Computer Science(), vol 11851. Springer, Cham. https://doi.org/10.1007/978-3-030-33642-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33642-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33641-7

  • Online ISBN: 978-3-030-33642-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics