Skip to main content

Abstract

Model quantization is leveraged to reduce the memory consumption and the computation time of deep neural networks. This is achieved by representing weights and activations with a lower bit resolution when compared to their high precision floating point counterparts. The suitable level of quantization is directly related to the model performance. Lowering the quantization precision (e.g. 2 bits), reduces the amount of memory required to store model parameters and the amount of logic required to implement computational blocks, which contributes to reducing the power consumption of the entire system. These benefits typically come at the cost of reduced accuracy. The main challenge is to quantize a network as much as possible, while maintaining the performance accuracy. In this work, we present a quantization method for the U-Net architecture, a popular model in medical image segmentation. We then apply our quantization algorithm to three datasets: (1) the Spinal Cord Gray Matter Segmentation (GM), (2) the ISBI challenge for segmentation of neuronal structures in Electron Microscopic (EM), and (3) the public National Institute of Health (NIH) dataset for pancreas segmentation in abdominal CT scans. The reported results demonstrate that with only 4 bits for weights and 6 bits for activations, we obtain 8 fold reduction in memory requirements while loosing only \(2.21\%\), \(0.57\%\) and \(2.09\%\) dice overlap score for EM, GM and NIH datasets respectively. Our fixed point quantization provides a flexible trade-off between accuracy and memory requirement, which is not provided by previous quantization methods for U-Net (Our code is released at https://github.com/hossein1387/U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/hossein1387/U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation.

References

  1. Miotto, R., et al.: Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19, 1236–1246 (2017)

    Article  Google Scholar 

  2. Thaler, S., Menkovski, V.: The role of deep learning in improving healthcare. Data Science for Healthcare, pp. 75–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05249-2_3

    Chapter  Google Scholar 

  3. Hubara, I., et al.: Quantized neural networks: training neural networks with low precision weights and activations. JMLR 18, 6869–6898 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  5. Prados, F., et al.: Spinal cord grey matter segmentation challenge. NeuroImage 152, 312–329 (2017)

    Article  Google Scholar 

  6. Cardona, A., et al.: An integrated micro-and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol. 8, e1000502 (2010)

    Article  Google Scholar 

  7. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  8. Pham, D.L., et al.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–337 (2000)

    Article  Google Scholar 

  9. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  10. Shen, D., et al.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  11. Honari, S., et al.: Recombinator networks: learning coarse-to-fine feature aggregation. In: CVPR (2016)

    Google Scholar 

  12. Badrinarayanan, V., et al.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. TPAMI 39, 2481–2495 (2017)

    Article  Google Scholar 

  13. Noh, H., et al.: Learning deconvolution network for semantic segmentation. In: ICCV (2015)

    Google Scholar 

  14. Isola, P., et al.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  15. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  16. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  17. Zhou, A., et al.: Incremental network quantization: Towards lossless CNNs with low-precision weights. CoRR (2017)

    Google Scholar 

  18. Courbariaux, M., et al.: BinaryConnect: training deep neural networks with binary weights during propagations. In: NeurIPS (2015)

    Google Scholar 

  19. Xu, X., et al.: Quantization of fully convolutional networks for accurate biomedical image segmentation. In: CVPR (2018)

    Google Scholar 

  20. Heinrich, M.P., et al.: TernaryNet: Faster deep model inference without GPUs for medical 3D segmentation using sparse and binary convolutions. CoRR (2018)

    Google Scholar 

  21. Hinton, G., et al.: Neural networks for machine learning, video lectures. Coursera (2012)

    Google Scholar 

  22. Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Tang, W., et al.: How to train a compact binary neural network with high accuracy? In: AAAI (2017)

    Google Scholar 

  24. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012)

    Google Scholar 

  25. Deuermeyer, D., Andrey, Z., Amy, R., Fritz, B.: Release notes for intel® distribution of openvino™ toolkit (2019). Accessed 13 June 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to MohammadHossein AskariHemmat , Sina Honari , Lucas Rouhier , Christian S. Perone , Julien Cohen-Adad , Yvon Savaria or Jean-Pierre David .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2050 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

AskariHemmat, M. et al. (2019). U-Net Fixed-Point Quantization for Medical Image Segmentation. In: Zhou, L., et al. Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention. LABELS HAL-MICCAI CuRIOUS 2019 2019 2019. Lecture Notes in Computer Science(), vol 11851. Springer, Cham. https://doi.org/10.1007/978-3-030-33642-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33642-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33641-7

  • Online ISBN: 978-3-030-33642-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics