Skip to main content

A Method Based on Filter Bank Common Spatial Pattern for Multiclass Motor Imagery BCI

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11872))

Abstract

The Common Spatial Pattern (CSP) algorithm is capable of solving the binary classification problem for the motor image task brain-computer interface (BCI). This paper proposes a novel method based on the Filter Bank Common Spatial Pattern (FBCSP) termed the Multiscale and Overlapping FBCSP (MO-FBCSP). We extend the CSP algorithm for multiclass by using the one-versus-one (OvO) strategy. Multiple periods are selected and combined with the overlapping spectrum of the filter bank which contains useful information. This method is evaluated on the benchmark BCI Competition IV dataset 2a with 9 subjects. An average accuracy of 80% was achieved with the random forest (RF) classifier, and the corresponding kappa value was 0.734. Quantitative results have shown that the proposed scheme outperforms the classical FBCSP algorithm by over 12%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang, Y., Wang, Y., Zhou, G., et al.: Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst. Appl. 96, 302–310 (2018)

    Article  Google Scholar 

  2. Rajkomar, A., Dean, J., Kohane, I.: Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358 (2019)

    Article  Google Scholar 

  3. Dornhege, G., Blankertz, B., Curio, G., Muller, K.R.: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans. Biomed. Eng. 51(6), 993–1002 (2004)

    Article  Google Scholar 

  4. Pfurtscheller, G., Brunner, C., Schlögl, A., Silva, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31(1), 153–159 (2006)

    Article  Google Scholar 

  5. Koles, Z.J., Lazar, M.S., Zhou, S.Z.: Spatial patterns underlying population differences in the background EEG. Brain Topogr. 2(4), 275–284 (1990)

    Article  Google Scholar 

  6. Lemm, S., Blankertz, B., Curio, G., et al.: Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52(9), 1541–1548 (2005)

    Article  Google Scholar 

  7. Dornhege, G., Blankertz, B., Krauledat, M., et al.: Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans. Biomed. Eng. 53(11), 2274–2281 (2006)

    Article  Google Scholar 

  8. Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition IV Datasets 2a and 2b. Front. Neurosci. 6, 39. https://doi.org/10.3389/fnins.2012.00039

  9. Iacoviello, D., Petracca, A., Spezialetti, M., et al.: A classification algorithm for electroencephalography signals by self-induced emotional stimuli. IEEE Trans. Cybern. 46(12), 3171–3180 (2016)

    Article  Google Scholar 

  10. Lu, N., Li, T., Ren, X., et al.: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines. IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 566–576 (2017)

    Article  Google Scholar 

  11. Sakhavi, S., Guan, G., Yan, S.C.: Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5619–5629 (2018)

    Article  MathSciNet  Google Scholar 

  12. Amin, S.U., Alsulaiman, M., Muhammad, G., et al.: Multilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classification. IEEE Access 7, 18940–18950 (2019)

    Article  Google Scholar 

  13. Barachan, A., Bonnet, S., Congedp, M.: Multiclass brain-computer interface classification by riemannian geometry. IEEE Trans. Biomed. Eng. 59(4), 920–928 (2011)

    Article  Google Scholar 

  14. Gaur, P., Pachori, R.B., Wang, H., et al.: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Syst. Appl. 95(1), 201–211 (2018)

    Article  Google Scholar 

  15. Hersche, M., Rellstab, T., Schiavone, P.D., et al.: Fast and accurate multiclass inference for mi-bcis using large multiscale temporal and spectral features. In: 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, pp. 1690–1694. IEEE (2018)

    Google Scholar 

  16. Brunner, C., Leeb, R., Muller-Putz, R., Schlogl, A., Pfurtscheller, G.: BCI competition 2008 - Graz data set A. http://www.bbci.de/competition/iv/desc_2a.pdf. Accessed 10 July 2019

  17. Razi, S., Mollaei, M.R.K., Ghasemi, J.: A novel method for classification of BCI mul-ti-class motor imagery task based on Dempster-Shafer theory. Inf. Sci. 484, 14–26 (2019)

    Article  Google Scholar 

  18. Wang, H.X.: Multiclass filters by a weighted pairwise criterion for EEG single-trial classification. IEEE Trans. Biomed. Eng. 58(5), 1412–1420 (2011)

    Article  Google Scholar 

  19. Kam, T.E., Suk, H.I., Lee, S.W.: Non-homogeneous spatial filter optimization for EEG-based brain-computer interfaces. In: International Winter Workshop on Brain-Computer Interface, Gangwo, South Korea, pp. 26–28. IEEE (2013)

    Google Scholar 

  20. Nicolas-Alonso, L.F., Corralejo, R., Gomez-Pilar, J., et al.: Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain computer interfaces. Neurocomputing 159, 186–196 (2015)

    Article  Google Scholar 

  21. He, L.H., Hu, D., Wan, M., et al.: Common Bayesian network for classification of EEG-Based multiclass motor imagery BCI. IEEE Trans. Syst. Man Cybern. Syst. 46(6), 843–854 (2016)

    Article  Google Scholar 

  22. Xie, X.F., Yu, Z.L., Gu, Z.H., et al.: Bilinear regularized locality preserving learning on riemannian graph for motor imagery BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 26(3), 698–708 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by a Natural Science Foundation of China (NSFC) grant (61572076) and Beijing Advanced Innovation Center for Imaging Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Likun Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, Z., Xia, L., Ma, M. (2019). A Method Based on Filter Bank Common Spatial Pattern for Multiclass Motor Imagery BCI. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11872. Springer, Cham. https://doi.org/10.1007/978-3-030-33617-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33617-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33616-5

  • Online ISBN: 978-3-030-33617-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics