Skip to main content

Modelling Survival by Machine Learning Methods in Liver Transplantation: Application to the UNOS Dataset

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11872))

Abstract

The aim of this study is to develop and validate a machine learning (ML) model for predicting survival after liver transplantation based on pre-transplant donor and recipient characteristics. For this purpose, we consider a database from the United Network for Organ Sharing (UNOS), containing 29 variables and 39,095 donor-recipient pairs, describing liver transplantations performed in the United States of America from November 2004 until June 2015. The dataset contains more than a \(74\%\) of censoring, being a challenging and difficult problem. Several methods including proportional-hazards regression models and ML methods such as Gradient Boosting were applied, using 10 donor characteristics, 15 recipient characteristics and 4 shared variables associated with the donor-recipient pair. In order to measure the performance of the seven state-of-the-art methodologies, three different evaluation metrics are used, being the concordance index (ipcw) the most suitable for this problem. The results achieved show that, for each measure, a different technique obtains the highest value, performing almost the same, but, if we focus on ipcw, Gradient Boosting outperforms the rest of the methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kleinbaum, D.G., Klein, M.: Survival Analysis, vol. 3. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-6646-9

    Book  MATH  Google Scholar 

  2. Allison, P.D.: Survival analysis using SAS: a practical guide. SAS Institute (2010)

    Google Scholar 

  3. Hong, Z., et al.: Survival analysis of liver transplant patients in Canada 1997–2002. In: Transplantation Proceedings, vol. 38, no. 9, pp. 2951–2956. Elsevier, 2006 November

    Article  Google Scholar 

  4. Abolghasemi, J., Toosi, M.N., Rasouli, M., Taslimi, H.: Survival analysis of liver cirrhosis patients after transplantation using accelerated failure time models. Biomed. Res. Ther. 5(11), 2789–2796 (2018)

    Article  Google Scholar 

  5. Martínez, J.A., et al.: Accuracy of the BAR score in the prediction of survival after liver transplantation. Ann. Hepatol. 18(2), 386–392 (2019)

    Article  Google Scholar 

  6. Wang, P., Li, Y., Reddy, C.K.: Machine learning for survival analysis: a survey. ACM Comput. Surv. (CSUR) 51(6), 110 (2019)

    Article  Google Scholar 

  7. Kiaee, F., Sheikhzadeh, H., Mahabadi, S.E.: Relevance vector machine for survival analysis. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 648–660 (2015)

    Article  MathSciNet  Google Scholar 

  8. Wang, Z., Wang, C.Y.: Buckley-James boosting for survival analysis with high-dimensional biomarker data. Stat. Appl. Genet. Mol. Biol. 9(1), 1–33 (2010)

    Article  MathSciNet  Google Scholar 

  9. Organ Procurement and Transplantation Network. United Network for Organ Sharing database (2019). https://unos.org

  10. Harrell, F.E., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A.: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15(4), 361–387 (1996)

    Article  Google Scholar 

  11. Uno, H., Cai, T., Pencina, M.J., D’Agostino, R.B., Wei, L.J.: On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat. Med. 30(10), 1105–1117 (2011)

    MathSciNet  Google Scholar 

  12. Lambert, J., Chevret, S.: Summary measure of discrimination in survival models based on cumulative/dynamic time-dependent ROC curves. Stat. Methods Med. Res. 25(5), 2088–2102 (2014)

    Article  MathSciNet  Google Scholar 

  13. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39(5), 1–13 (2011)

    Article  Google Scholar 

  14. Cox, D.R.: Regression models and life tables (with discussion). J. R. Stat. Soc. Ser. B 34, 187–220 (1972)

    MATH  Google Scholar 

  15. Stute, W.: Consistent estimation under random censorship when covariables are present. J. Multivar. Anal. 45(1), 89–103 (1993)

    Article  MathSciNet  Google Scholar 

  16. Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  17. Pölsterl, S., Navab, N., Katouzian, A.: Fast training of support vector machines for survival analysis. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 243–259. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_15

    Chapter  Google Scholar 

  18. Chapelle, O., Keerthi, S.S.: Efficient algorithms for ranking with SVMs. Inf. Retr. 13(3), 201–215 (2010)

    Article  Google Scholar 

  19. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18(1), 24 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This research has been partially supported by the Ministerio de Economía, Industria y Competitividad of Spain (Refs. TIN2017-90567-REDT and TIN2017-85887-C2-1-P). D. Guijo-Rubio’s research has been supported by the FPU Predoctoral Program from Spanish Ministry of Education and Science (Grant Ref. FPU16/02128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Guijo-Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guijo-Rubio, D., Villalón-Vaquero, P.J., Gutiérrez, P.A., Ayllón, M.D., Briceño, J., Hervás-Martínez, C. (2019). Modelling Survival by Machine Learning Methods in Liver Transplantation: Application to the UNOS Dataset. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11872. Springer, Cham. https://doi.org/10.1007/978-3-030-33617-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33617-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33616-5

  • Online ISBN: 978-3-030-33617-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics