Skip to main content

Representation Learning of Knowledge Graphs with Multi-scale Capsule Network

  • Conference paper
  • First Online:
Book cover Intelligent Data Engineering and Automated Learning – IDEAL 2019 (IDEAL 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11871))

Abstract

Representation learning of knowledge graphs has gained wide attention in the field of natural language processing. Most existing knowledge representation models for knowledge graphs embed triples into a continuous low-dimensional vector space through a simple linear transformation. In spite of high computation efficiency, the fitting ability of these models is suboptimal. In this paper, we propose a multi-scale capsule network to model relations between embedding vectors from a deep perspective. We use convolution kernels with different sizes of windows in the convolutional layer inside a Capsule network to extract semantic features of entities and relations in triples. These semantic features are then represented as a continuous vector through a routing process algorithm in the capsule layer. The modulus of this vector is used as the score of confidence of correctness of a triple. Experiments show that the proposed model obtains better performance than state-of-the-art embedding models for the task of knowledge graph completion over two benchmarks, WN18RR and FB15k-237.

The work is supported by the National Natural Science Foundation of China (61672139) and Project No. JCKY2018205C012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our code is available at: https://github.com/1780041410/McapsE.

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  2. Cai, L., Wang, W.Y.: KBGAN: adversarial learning for knowledge graph embeddings (2017)

    Google Scholar 

  3. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  4. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (vol. 1: Long Papers), pp. 687–696 (2015)

    Google Scholar 

  5. Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse transfer matrix. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  7. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  8. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network (2018)

    Google Scholar 

  9. Nguyen, D.Q., Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A capsule network-based embedding model for knowledge graph completion and search personalization. arXiv preprint arXiv:1808.04122 (2018)

  10. Nguyen, D.Q.: An overview of embedding models of entities and relationships for knowledge base completion (2018)

    Google Scholar 

  11. Pinter, Y., Eisenstein, J.: Predicting semantic relations using global graph properties (2018)

    Google Scholar 

  12. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems, pp. 3856–3866 (2017)

    Google Scholar 

  13. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Workshop on Continuous Vector Space Models & Their Compositionality (2015)

    Google Scholar 

  14. Trouillon, T., Welbl, J., Riedel, S., Gaussier, R., Bouchard, G.: Complex embeddings for simple link prediction (2016)

    Google Scholar 

  15. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  16. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwei Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, J., Yang, Z., Dang, J., Pan, C., Zhang, F. (2019). Representation Learning of Knowledge Graphs with Multi-scale Capsule Network. In: Yin, H., Camacho, D., Tino, P., Tallón-Ballesteros, A., Menezes, R., Allmendinger, R. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2019. IDEAL 2019. Lecture Notes in Computer Science(), vol 11871. Springer, Cham. https://doi.org/10.1007/978-3-030-33607-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33607-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33606-6

  • Online ISBN: 978-3-030-33607-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics