Skip to main content

A Framework of Learning and Communication with IoT-Enabled Ecosystem

  • Chapter
  • First Online:
Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 174))

Abstract

Internet of Things or IoT is fast emerging as the ubiquitous data-directed solution for autonomous all-machine networks. In this article we propose an IoT-enabled framework that performs two interlinked data-driven roles—communicating intelligence and intelligent communication. The first role points to harvesting multi-variate data which varies in space-time for knowledge and features whereas the latter role deals with control and inference derived from the sensed data. We integrate these roles in smart architecture and apply it to probe critical problems in domains such as Transport, Energy, Environment and Telecom. The discussion on IoT-enabled system proposes novelties such as digital divide of supply versus demand and workflow; graph-based learning of state-space and formulates energy efficiency of IoT node. The case study for vehicular traffic reveals that IoT-enabled system offers reliable, easy to scale, AI integrated and efficient communication that can complement performance with the existing networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorensen, A., Okata, J. (eds.): Megacities: Urban form, pp. 1–418. Governance and Sustainability, Springer Verlag (2011)

    Google Scholar 

  2. Drakakis-Smith, D.: Third world cities: Sustainable urban development, part 3. Basic Needs Hum. Rights, Urban Stud. 34(5–6), 797–823 (1997)

    Google Scholar 

  3. Brennan, E., Lo, F.C., Chamie, J., Uitto, J.I., Fuchs, R.: Mega-city Growth and the Future, pp. 1–392. United Nations University Press, Japan (1996)

    Google Scholar 

  4. Goodfellow, I., Bengio, Y., Cournville, A., Bach, F.: Deep learning—adaptive computation and machine learning series. MIT Press, Cambridge, Massachusetts (2017)

    Google Scholar 

  5. Guo, K., Lu, Y., Gao, H., Cao, R.: Artificial intelligence-based semantic internet of things in a user-centric smart city. Sensors (Basel) 18(5), 1341–1355 (2018)

    Article  Google Scholar 

  6. Nilsson, N.: The quest for artificial intelligence: a history of ideas and achievements. Cambridge University Press, Massachusetts (2009)

    Book  Google Scholar 

  7. Ray, P.P.: A survey on internet of things architectures. Comput. Inf. Sci. J. Sci. Direct 30(3), 291–319 (2018)

    Google Scholar 

  8. Mulay, A.: Sustaining Moore’s Law—Uncertainty Leading to Certainty of IoT Revolution. Morgan and Claypool Publishers (2016)

    Google Scholar 

  9. Goldsmith, A.: Wireless Communications. Cambridge University Press (2012)

    Google Scholar 

  10. Berteskas, D., Gallager, R.G.: Data networks. Pearson Press (1992)

    Google Scholar 

  11. Hejazi, H., Rajab, H., Cinkler, T., Lengyel, L.: Survey of platforms for massive IoT. IEEE Proc. in Future of IoT Technologies. Hungary, pp. 1–8 (2018)

    Google Scholar 

  12. Pop, M.-D., Proștean, O.: Comparison between smart city approaches in road traffic management. In: Proceeding of 14th International Symposium on Management. Elsevier Procedia of Social Behavioural sciences, vol. 238, pp. 29–36 (2018)

    Article  Google Scholar 

  13. Kanungo, A., Sharma, A., Singhla, C.: Smart traffic lights switching and traffic density calculation using video processing. Proc. of IEEE RAECS 1–5 (2014)

    Google Scholar 

  14. Bommes, M., Fazekas, A., Volkenhoff, T., Oeser, M.: Video based intelligent transportation systems—state of the art and future development. Elsevier Procedia Transp. Res. 14, 4495–4504 (2016)

    Article  Google Scholar 

  15. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press (2010)

    Google Scholar 

  16. Gallager, R.G.: Discrete Stochastic Processes. Springer Science Press (1996)

    Google Scholar 

  17. Zhu, P., Wen, L., Bian, X., Ling, H., Hu, Q.: Vision Meets Drones: A Challenge, pp. 104–109. Proc.of IEEE CVPR, Salt lake City (2018)

    Google Scholar 

  18. Everingham, M., Eslami, S.M.A., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int’l J. Comput. Vis. 111, 98–136 (2015)

    Article  Google Scholar 

  19. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. Proc. of IEEE CVPR, 248–255 (2009)

    Google Scholar 

  20. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1770 (1997)

    Article  Google Scholar 

  21. Cammarano, A., Petrioli, C., Spenza, D.: Online energy harvesting prediction in environmentally powered wireless sensor networks. IEEE Sens. J. 16(17), 6793–6804 (2016)

    Article  Google Scholar 

  22. Hepsbali, A.: A key review of exergetic analysis and assessment of renewable energy sources for a sustainable future. J. Renew. Sustain. Energy Rev. 593–661 (2008)

    Google Scholar 

  23. Cesarini, D., Jelicic, C., Kuri, M.: Experimental validation of energy harvesting-system availability improvement through battery heating. IEEE Sens. J. 17(11), 3497–3506 (2017)

    Article  Google Scholar 

  24. Ammar, A.M.A., Fallah, Y.P., Reynolds, D.: Throughput in an energy harvesting wireless uplink. IEEE Sens. J. 6(18), 2616–2627 (2018)

    Google Scholar 

  25. Rajesh, R., Sharma. V., Vishwanath, P.: Information capacity of energy harvesting sensor nodes. Proc. of IEEE ISIT 2363–2367 (2011)

    Google Scholar 

  26. Ozel, O., Tutuncuoglu, K., Ulukus, S., Yener, A.: Capacity of the energy harvesting channel with energy arrival information at the receiver. Proc. of IEEE ITW, pp. 332–336 (2014)

    Google Scholar 

  27. Shaviv, D., Nguyen, P.-M., Ӧzgür, A.: Capacity of the energy-harvesting channel with a finite battery. IEEE Transac. Inf. Theory 62(11), 6436–6458 (2016)

    Article  MathSciNet  Google Scholar 

  28. Shannon, C.E.: A mathematical theory of communication. J. Bell Syst. Tech. 27, 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  29. Verdu, S., McLaughlin, S.W. (eds.): Information Theory: 50 years of Discovery. IEEE Press, New Jersey (2000)

    MATH  Google Scholar 

  30. Cover, T.M., Thomas, J.A.: Elements of Information Theory, Wiley press (2006)

    Google Scholar 

  31. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes. 4th ed., Tata McGraw-Hill (2008)

    Google Scholar 

  32. Brachman, A.: Simulation comparison of LEACH-based routing protocols for wireless sensor networks. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) Computer Networks. Communications in Computer and Information Science, vol. 370. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  33. Uysal-Biyikoglu, E., Prabhakar, B., El Gamal, A.: Energy-efficient packet transmission over a wireless link. IEEE/ACM Trans. Networking 10, 487–499 (2002)

    Article  Google Scholar 

  34. Reed, J.H.: An Introduction to Ultra-Wide Band Communication Systems, Prentice Hall (2005)

    Google Scholar 

Download references

Acknowledgements

In writing of the chapter gratitude is due to suggestions of the Editors of this volume. This article treats communication theory at graduate level showcasing bits of logic, architecture and switching methods that can be useful in IoT-enabled solution. Sincere thanks are due to Professor R G. Gallager for unmatched insights and inspirational work in data and communication sciences. Author thanks learning in ecosystems over the years with Communication Sciences Institute USC; GCATT, Georgia Tech. and EE & Statistics, UC Riverside. Author sincerely acknowledges the generous help of Er. Ravindra Prakash Bhatnagar in the preparing of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay R. Bhatnagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatnagar, J.R. (2020). A Framework of Learning and Communication with IoT-Enabled Ecosystem. In: Peng, SL., Pal, S., Huang, L. (eds) Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. Intelligent Systems Reference Library, vol 174. Springer, Cham. https://doi.org/10.1007/978-3-030-33596-0_2

Download citation

Publish with us

Policies and ethics