Skip to main content

Development of a Laboratory Unit for Assessing the Energy Intensity of Grain Drying Using Microwave

  • Conference paper
  • First Online:
Intelligent Computing and Optimization (ICO 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1072))

Included in the following conference series:

Abstract

The energy cost of grain drying currently reach up to 9.5 MJ per kilogram of evaporated moisture. Theoretically the minimum value of the energy cost of this procedure is the 2.8 to 3.5 MJ per kilogram of evaporated moisture. Existing technologies appropriate for the minimum cost have low performance (less than 2 tons in a hour). Thus, the development of technologies allowing to provide the required performance with the lowest cost of energy currently is useful for a wide range of agricultural producers. The intensity of drying depends on the physico-chemical properties of the material and the driving force of the process. The use of microwave fields allows reducing the cost of the thermal treatment on 15–20% depending on the process and type of the processing material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson, S.: Dielectric Properties of Agricultural Materials and Their Applications, p. 229. Academic Press, Academic Press (2015)

    Google Scholar 

  2. Ranjbaran, M., Zare, D.: Simulation of energetic- and exergetic performance of micro-wave-assisted fluidized bed drying of soybeans. Energy (2013). https://doi.org/10.1016/j.energy.2013.06.057

    Article  Google Scholar 

  3. Vasilyev, A., Budnikov, D., Gracheva, N.: The mathematical model of grain drying with the use of electroactivated air. Res. Agric. Electr. Eng. 1(5), 32–37 (2014)

    Google Scholar 

  4. Vasiliev, A.N., Budnikov, D.A., Gracheva, N.N., Smirnov, A.A.: Increasing efficiency of grain drying with the use of electroactivated air and heater control. In: Kharchenko, V., Vasant, P. (eds.) Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development, pp. 255–282. IGI Global, Hershey (2018). ISBN: 9781522538677. https://doi.org/10.4018/978-1-5225-3867-7.ch011, https://www.igi-global.com/chapter/increasing-efficiency-of-grain-drying-with-the-use-of-electroactivated-air-and-heater-control/201341

  5. Lykov, A.V.: Teorija sushki [Theory of drying]. Moscow, Energiia Publ., p. 472 (1968)

    Google Scholar 

  6. Malin, N.I.: Energy-saving drying of grain [Jenergosberegajushhaja sushka zerna], M.: Kolos, p. 240 (2004)

    Google Scholar 

  7. Malin, N.I. Technology of grain storage [Tehnologija hranenija zerna] M.: Kolos, p. 280 (2005)

    Google Scholar 

  8. Rudobashta, S.P., Zueva, G.A., Kartashov, E.M.: Heat and mass transfer when drying a spherical particle in an oscillating electromagnetic field. Theor. Found. Chem. Eng. 50(5), 718–729 (2016)

    Article  Google Scholar 

  9. Budnikov, D., Vasilyev, A.: The Model of Optimization of Grain Drying with Use of Eletroactivated Air, ICO 2018, AISC 866, pp. 139–145 (2019). https://doi.org/10.1007/978-3-030-00979-3_14

    Google Scholar 

  10. Vasilyev, A., Budnikov, D., Vasilyev, A.A., Rudenko, N., Gracheva, N.: Influence of the Direction of Air Movement in the Microwave-Convection Drier on the Energy Intensity of the Process Innovative Computing Trends and Applications, EAI/Springer Innovations in Communication and Computing https://doi.org/10.1007/978-3-030-03898-4_3

    Chapter  Google Scholar 

  11. Nelson, S.O.: Dielectric properties of agricultural products and some applications. Res. Agr. Eng. 54(2), 104–112 (2008)

    Article  Google Scholar 

  12. Yadav, D.N., Patki, P.E., Sharma, G.K.: Effect of microwave heating of wheat grains on the browning of dough and quality of chapattis. Int. J. Food Sci. Technol. 43(7), 1217–1225 (2007)

    Article  Google Scholar 

  13. Aniskin, V.I., Rybaruk, V.A.: Teorija i tehnologija sushki i vremennoj konservacii zerna aktivnym ventilirovaniem [Theory and technology of drying and temporary preservation of grain active ventilation]. Moscow, Kolos Publ., p. 190 (1972)

    Google Scholar 

  14. Venikov, V.A.: Teorija podobijai modelirovanija (primenitel’no k zadacham jelektrojenergetiki): uchebnik dlja vuzov po spec. « Kibernetika j elektr. sistem » -e izd., pererab. I dop. Moscow, Visshaja shkola Publ., p. 439 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Budnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Budnikov, D., Vasilyev, A.N. (2020). Development of a Laboratory Unit for Assessing the Energy Intensity of Grain Drying Using Microwave. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing and Optimization. ICO 2019. Advances in Intelligent Systems and Computing, vol 1072. Springer, Cham. https://doi.org/10.1007/978-3-030-33585-4_9

Download citation

Publish with us

Policies and ethics