Skip to main content

Optimal Power Flow Considering Cost of Wind and Solar Power Uncertainty Using Particle Swarm Optimization

  • Conference paper
  • First Online:
Book cover Intelligent Computing and Optimization (ICO 2019)

Abstract

An optimal power flow (OPF) solution considering cost of wind and solar power uncertainty using Particle Swarm Optimization (PSO) techniques is proposed. A Monte Carlo approach is used to simulate the uncertainty, by Weibull and Normal distribution models for wind and solar, respectively. Wind generation power is determined using a wind turbine mathematical model while solar power is calculated using PV and inverter models. The costs of wind and solar uncertainty consists of the opportunity cost of renewable power shortage and the opportunity cost of renewable power surplus. They reflect the additional spinning reserve and benefit loss caused by the unavailability of renewable power. These uncertainty costs are integrated in to conventional OPF problem, and then solved by four types of PSO algorithms. The simulation results from different PSO techniques are compared and the PSO with time variant inertia and acceleration coefficients and mutation based PSO provide the superior results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milligan, M., Hodge, B.-M., Kirby, B., Clark, C.: Integration costs: are they unique to wind and solar energy. In: American Wind Energy Association WINDPOWER 2012, Atlanta, Georgia (2012)

    Google Scholar 

  2. Yong, L., Tao, S.: Economic dispatch of power system incorporating wind power plant. In: Power Engineering Conference, Singapore (2007)

    Google Scholar 

  3. Velamuri, S., Sreejith, S., Ponnambalam, P.: Static economic dispatch incorporating wind farm using flower pollination algorithm. Perspect. Sci. 8, 260–262 (2016). https://doi.org/10.1016/j.pisc.2016.04.045. ISSN 2213-0209

    Article  Google Scholar 

  4. Zhou, W., Peng, Y., Sun, H.: Optimal wind-thermal coordination dispatch based on risk reserve constraints. Eur. Trans. Electr. Power 21(1), 740–756 (2011)

    Article  Google Scholar 

  5. Chao, L., Jun, Y., Zhi, D., Jifeng, H., Mingsong, L.: Day-ahead economic dispatch of wind integrated power system considering optimal scheduling of reserve capacity. Energy Proc. 75, 1044–1051 (2015). https://doi.org/10.1016/j.egypro.2015.07.463. ISSN 1876-6102

    Article  Google Scholar 

  6. Cheng, W., Zhang, H.: A dynamic economic dispatch model incorporating wind power based on chance constrained programming. Energies 8, 233–256 (2015). https://doi.org/10.3390/en8010233

    Article  Google Scholar 

  7. Jabr, R., Pal, B.: Intermittent wind generation in optimal power flow dispatching. IET Gener. Transm. Distrib. 3(1), 66–74 (2009)

    Article  Google Scholar 

  8. Reddy, S.S.: Multi-objective optimal power flow in the presence of intermittent renewable energy sources. Int. J. Eng. Technol. 7(4), 2766–2769 (2018). https://doi.org/10.14419/ijet.v7i4.18653

    Article  Google Scholar 

  9. Siahkali, H., Vakilian, M.: Electricity generation scheduling with large-scale wind farms using particle swarm optimization. Electr. Power Syst. Res. 79(5), 826–836 (2009)

    Article  Google Scholar 

  10. Saravanan, R., Subrahmaniam, S., Dharmalingam, V., Ganesan, S.: Generation scheduling with large-scale wind farms using grey wolf optimization. J. Electr. Eng. Technol. 12(4), 1348–1356 (2017)

    Google Scholar 

  11. Nasiragdam, H., Najafian, N.: Generation scheduling in large-scale power systems with wind farms using MICA. J. Artif. Intell. Electr. Eng. 4(16), 35–44 (2016)

    Google Scholar 

  12. Sun, Y., Wu, J., Li, G., He, J.: Dynamic economic dispatch considering wind power penetration based on wind speed forecasting and stochastic programming. Proc. CSEE 29(4), 47 (2009)

    Google Scholar 

  13. Cheng, W., Zhang, H.: A dynamic economic dispatch model incorporating wind power based on chance constrained programming. Energies 8, 233–256 (2015)

    Article  Google Scholar 

  14. Abid, A., Malik, T.N., Abid, F., Sajjad, I.A.: Dynamic economic dispatch incorporating photovoltaic and wind generation using hybrid FPA with SQP. IETE J. Res. 64, 1–10 (2018)

    Google Scholar 

  15. Alham, M.H., Elshahed, M., Ibrahim, D.K., Abo El Zahab, E.E.D.: A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management. Renew. Energy 96, 800–811 (2016)

    Article  Google Scholar 

  16. Wang, L., Singh, C.: Balancing risk and cost in fuzzy economic dispatch including wind power penetration based on particle swarm optimization. Electr. Power Syst. Res. 78(8), 1361–1368 (2008)

    Article  Google Scholar 

  17. Wu, C., Hug, G., Kar, S.: Risk-limiting economic dispatch for electricity markets with flexible ramping products. In: IEEE Power & Energy Society General Meeting, Chicago, IL, p. 1 (2017). https://doi.org/10.1109/PESGM.2017.8273771

  18. Wang, C., et al.: Robust risk-constrained unit commitment with large-scale wind generation: an adjustable uncertainty set approach. IEEE Trans. Power Syst. 32(1), 723–733 (2017). https://doi.org/10.1109/TPWRS.2016.2564422

    Article  Google Scholar 

  19. Miranda, V., Hang, P.S.: Economic dispatch model with fuzzy wind constraints and attitudes of dispatchers. IEEE Trans. Power Syst. 20(4), 2143–2145 (2005)

    Article  Google Scholar 

  20. Ela, E., Diakov, V., Ibanez, E., Heaney, M.: Impacts of Variability and Uncertainty in Solar Photovoltaic Generation at Multiple Timescales. National Renewable Energy Laboratory, Denver (2013)

    Google Scholar 

  21. Shi, L., Wang, C., Yao, L., Ni, Y., Bazargan, M.: Optimal power flow solution incorporating wind power. IEEE Syst. J. 6, 233 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weerakorn Ongsakul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samakpong, T., Ongsakul, W., Nimal Madhu, M. (2020). Optimal Power Flow Considering Cost of Wind and Solar Power Uncertainty Using Particle Swarm Optimization. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing and Optimization. ICO 2019. Advances in Intelligent Systems and Computing, vol 1072. Springer, Cham. https://doi.org/10.1007/978-3-030-33585-4_19

Download citation

Publish with us

Policies and ethics