Skip to main content

Methods to Improve Ranking Chemical Structures in Ligand-Based Virtual Screening

  • Conference paper
  • First Online:
Emerging Trends in Intelligent Computing and Informatics (IRICT 2019)

Abstract

One of the main tasks in chemoinformatics is searching for active chemical compounds in screening databases. The chemical databases can contain thousands or millions of chemical structures for screening. Therefore, there is an increasing need for computational methods that can help alleviate some challenges for saving time and cost in drug discover design. The ranking of chemical compounds can be accomplished according to their chances of clinical success by the computational tools. In this paper, the techniques that have been used to improve the ranking of chemical structures in similarity searching methods have been highlighted through two categories. Firstly, the taxonomy of using machine learning techniques in ranking chemical structures have been introduced. Secondly, we have discussed the alternative chemical ranking approaches that can be used instead of classical ranking criteria to enhance the performance of similarity searching methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walters, W.P., Stahl, M.T., Murcko, M.A.: Virtual screening—an overview. Drug Discov. Today 3(4), 160–178 (1998)

    Article  Google Scholar 

  2. Johnson, M.A., Maggiora, G.M.: Concepts and Applications of Molecular Similarity. Wiley, New York (1990)

    Google Scholar 

  3. Gasteiger, J., Engel, T.: Chemoinformatics: A Textbook. Wiley (2006)

    Google Scholar 

  4. Al-Dabbagh, M.M., et al.: Quantum probability ranking principle for ligand-based virtual screening. J. Comput.-Aided Mol. Des. 31(4), 365–378 (2017)

    Article  Google Scholar 

  5. Jorissen, R.N., Gilson, M.K.: Virtual screening of molecular databases using a support vector machine. J. Chem. Inf. Model. 45(3), 549–561 (2005)

    Article  Google Scholar 

  6. Geppert, H., et al.: Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds. J. Chem. Inf. Model. 48(4), 742–746 (2008)

    Article  Google Scholar 

  7. Rathke, F., et al.: StructRank: a new approach for ligand-based virtual screening. J. Chem. Inf. Model. 51(1), 83–92 (2010)

    Article  Google Scholar 

  8. Agarwal, S., Dugar, D., Sengupta, S.: Ranking chemical structures for drug discovery: a new machine learning approach. J. Chem. Inf. Model. 50(5), 716–731 (2010)

    Article  Google Scholar 

  9. Jacob, L., Vert, J.-P.: Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24(19), 2149–2156 (2008)

    Article  Google Scholar 

  10. Jacob, L., et al.: Virtual screening of GPCRs: an in silico chemogenomics approach. BMC Bioinf. 9(1), 363 (2008)

    Article  Google Scholar 

  11. Vert, J.-P., Jacob, L.: Machine learning for in silico virtual screening and chemical genomics: new strategies. Comb. Chem. High Throughput Screen. 11(8), 677 (2008)

    Article  Google Scholar 

  12. Rupp, M., Proschak, E., Schneider, G.: Kernel approach to molecular similarity based on iterative graph similarity. J. Chem. Inf. Model. 47(6), 2280–2286 (2007)

    Article  Google Scholar 

  13. Ralaivola, L., et al.: Graph kernels for chemical informatics. Neural Netw. 18(8), 1093–1110 (2005)

    Article  Google Scholar 

  14. Plewczynski, D.: Brainstorming: weighted voting prediction of inhibitors for protein targets. J. Mol. Model. 17(9), 2133–2141 (2011)

    Article  Google Scholar 

  15. Xie, Q.-Q., et al.: Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-Met. Eur. J. Med. Chem. 46(9), 3675–3680 (2011)

    Article  Google Scholar 

  16. Schneider, N., et al.: Gradual in silico filtering for druglike substances. J. Chem. Inf. Model. 48(3), 613–628 (2008)

    Article  Google Scholar 

  17. Klekota, J., Roth, F.P.: Chemical substructures that enrich for biological activity. Bioinformatics 24(21), 2518–2525 (2008)

    Article  Google Scholar 

  18. Deconinck, E., et al.: Classification tree models for the prediction of blood-brain barrier passage of drugs. J. Chem. Inf. Model. 46(3), 1410–1419 (2006)

    Article  Google Scholar 

  19. Hou, T., Wang, J., Li, Y.: ADME evaluation in drug discovery 8. The prediction of human intestinal absorption by a support vector machine. J. Chem. Inf. Model. 47(6), 2408–2415 (2007)

    Article  Google Scholar 

  20. de Cerqueira Lima, P., et al.: Combinatorial QSAR modeling of P-glycoprotein substrates. J. Chem. Inf. Model. 46(3), 1245–1254 (2006)

    Article  Google Scholar 

  21. Mente, S., Lombardo, F.: A recursive-partitioning model for blood–brain barrier permeation. J. Comput.-Aided Mol. Des. 19(7), 465–481 (2005)

    Article  Google Scholar 

  22. Lamanna, C., et al.: Straightforward recursive partitioning model for discarding insoluble compounds in the drug discovery process. J. Med. Chem. 51(10), 2891–2897 (2008)

    Article  Google Scholar 

  23. Koutsoukas, A., et al.: In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass naïve bayes and parzen-rosenblatt window. J. Chem. Inf. Model. 53(8), 1957–1966 (2013)

    Article  Google Scholar 

  24. Lowe, R., et al.: Predicting the mechanism of phospholipidosis. J. Cheminf. 4, 2 (2012)

    Article  Google Scholar 

  25. Wasserman, L.: Bayesian model selection and model averaging. J. Math. Psychol. 44(1), 92–107 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Abdo, A., et al.: Ligand-based virtual screening using bayesian networks. J. Chem. Inf. Model. 50(6), 1012–1020 (2010)

    Article  MathSciNet  Google Scholar 

  27. Ahmed, A., A. Abdo, and N. Salim, Ligand-based Virtual screening using Bayesian inference network and reweighted fragments. Sci. World J. (2012)

    Google Scholar 

  28. Kauffman, G.W., Jurs, P.C.: QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors. J. Chem. Inf. Comput. Sci. 41(6), 1553–1560 (2001)

    Article  Google Scholar 

  29. Konovalov, D.A., et al.: Benchmarking of QSAR models for blood-brain barrier permeation. J. Chem. Inf. Model. 47(4), 1648–1656 (2007)

    Article  Google Scholar 

  30. Votano, J.R., et al.: Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis 19(5), 365–377 (2004)

    Article  Google Scholar 

  31. Briem, H., Günther, J.: Classifying “kinase inhibitor-likeness” by using machine-learning methods. ChemBioChem 6(3), 558–566 (2005)

    Article  Google Scholar 

  32. De Ferrari, L., et al.: EnzML: multi-label prediction of enzyme classes using InterPro signatures. BMC Bioinf. 13(1), 61 (2012)

    Article  Google Scholar 

  33. Patel, J., Chaudhari, C.: Introduction to the Artificial Neural Networks and their applications in QSAR studies. Altex 22, 271 (2005)

    Google Scholar 

  34. Patel, J., Patel, L.: Artificial neural networks and their applications in pharmaceutical research. Pharmabuzz 2, 8–17 (2007)

    Google Scholar 

  35. Selzer, P., Ertl, P.: Applications of self-organizing neural networks in virtual screening and diversity selection. J. Chem. Inf. Model. 46(6), 2319–2323 (2006)

    Article  Google Scholar 

  36. Hykin, S.: Neural Networks: A Comprehensive Foundation. Printice-Hall Inc., New Jersey (1999)

    Google Scholar 

  37. Hristozov, D., Oprea, T.I., Gasteiger, J.: Ligand-based virtual screening by novelty detection with self-organizing maps. J. Chem. Inf. Model. 47(6), 2044–2062 (2007)

    Article  Google Scholar 

  38. Bonachera, F., et al.: Using self-organizing maps to accelerate similarity search. Bioorg. Med. Chem. 20(18), 5396–5409 (2012)

    Article  Google Scholar 

  39. Afantitis, A., et al.: Ligand - based virtual screening procedure for the prediction and the identification of novel β-amyloid aggregation inhibitors using Kohonen maps and Counter propagation Artificial Neural Networks. Eur. J. Med. Chem. 46(2), 497–508 (2011)

    Article  Google Scholar 

  40. Hasegawa, K., Funatsu, K.: Partial least squares modeling and genetic algorithm optimization in quantitative structure-activity relationships. SAR QSAR Environ. Res. 11(3–4), 189–209 (2000)

    Article  Google Scholar 

  41. Zuegge, J., et al.: A fast virtual screening filter for cytochrome P450 3A4 inhibition liability of compound libraries. Quant. Struct.-Act. Relat. 21(3), 249–256 (2002)

    Article  Google Scholar 

  42. Wang, Y., Li, Y., Wang, B.: An in silico method for screening nicotine derivatives as cytochrome P450 2A6 selective inhibitors based on kernel partial least squares. Int. J. Mol. Sci. 8(2), 166–179 (2007)

    Article  Google Scholar 

  43. Roche, O., et al.: A virtual screening method for prediction of the HERG potassium channel liability of compound libraries. ChemBioChem 3(5), 455–459 (2002)

    Article  Google Scholar 

  44. Gillet, V.J., Willett, P., Bradshaw, J.: Identification of biological activity profiles using substructural analysis and genetic algorithms. J. Chem. Inf. Comput. Sci. 38(2), 165–179 (1998)

    Article  Google Scholar 

  45. Shi, L.M., et al.: Mining the NCI anticancer drug discovery databases: genetic function approximation for the QSAR study of anticancer ellipticine analogues. J. Chem. Inf. Comput. Sci. 38(2), 189–199 (1998)

    Article  Google Scholar 

  46. Jones, G., Willett, P., Glen, R.C.: Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 245(1), 43–53 (1995)

    Article  Google Scholar 

  47. Morris, G.M., et al.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19(14), 1639–1662 (1998)

    Article  Google Scholar 

  48. Kang, L., et al.: An improved adaptive genetic algorithm for protein–ligand docking. J. Comput.-Aided Mol. Des. 23(1), 1–12 (2009)

    Article  Google Scholar 

  49. Hasegawa, K., Funatsu, K.: Non-linear modeling and chemical interpretation with aid of support vector machine and regression. Curr. Comput.-Aided Drug Des. 6(1), 24–36 (2010)

    Article  Google Scholar 

  50. Li, L., Wang, B., Meroueh, S.O.: Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries. J. Chem. Inf. Model. 51(9), 2132–2138 (2011)

    Article  Google Scholar 

  51. Zuccon, G.: Document ranking with quantum probabilities, in College of Science and Engineering, School of Computing Science, p. 222, University of Glasgow, UK (2012)

    Google Scholar 

  52. Zuccon, G., Azzopardi, L., Van Rijsbergen, C.K.: An analysis of ranking principles and retrieval strategies. In: Advances in Information Retrieval Theory, pp. 151–163. Springer (2011)

    Google Scholar 

  53. Willett, P.: Textual and chemical information processing: different domains but similar algorithms. Inf. Res. 5(2) (2000)

    Google Scholar 

  54. Al-Dabbagh, M., et al.: A quantum-based similarity method in virtual screening. Molecules 20(10), 18107 (2015)

    Article  Google Scholar 

  55. Fuhr, N.: A probability ranking principle for interactive information retrieval. Inf. Retrieval 11(3), 251–265 (2008)

    Article  Google Scholar 

  56. Zuccon, G., Azzopardi, L., Rijsbergen, C.J.K.V.: The interactive PRP for diversifying document rankings. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1227–1228. ACM, Beijing, China (2011)

    Google Scholar 

  57. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336. ACM, Melbourne, Australia (1998)

    Google Scholar 

  58. Leelanupab, T., Zuccon, G., Jose, J.M.: When two is better than one: a study of ranking paradigms and their integrations for subtopic retrieval. In: Information Retrieval Technology, pp. 162–172. Springer (2010)

    Google Scholar 

  59. He, J., Meij, E., de Rijke, M.: Result diversification based on query-specific cluster ranking. J. Am. Soc. Inf. Sci. Technol. 62(3), 550–571 (2011)

    Google Scholar 

  60. Santos, R.L., Macdonald, C., Ounis, I.: On the role of novelty for search result diversification. Inf. Retrieval 15(5), 478–502 (2012)

    Article  Google Scholar 

  61. Wang, J., Zhu, J.: Portfolio theory of information retrieval. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM (2009)

    Google Scholar 

  62. Wang, J.: Mean-variance analysis: a new document ranking theory in information retrieval. In: Advances in Information Retrieval, pp. 4–16. Springer (2009)

    Google Scholar 

  63. Aly, R., et al., Beyond shot retrieval: searching for broadcast news items using language models of concepts. In: Advances in Information Retrieval, p. 241–252. Springer (2010)

    Google Scholar 

  64. Zuccon, G., Azzopardi, L., Rijsbergen, C.J.K.V.: Has portfolio theory got any principles?. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 755–756. ACM, Geneva, Switzerland (2010)

    Google Scholar 

  65. Rijsbergen, C.J.V.: The Geometry of Information Retrieval. Cambridge University Press, UK (2004)

    Google Scholar 

  66. Piwowarski, B., et al.: What can quantum theory bring to information retrieval. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 59–68. ACM, Toronto, ON, Canada (2010)

    Google Scholar 

  67. Zuccon, G., Azzopardi, L.: Developing the quantum probability ranking principle (2010)

    Google Scholar 

  68. Arafat, S.: Foundations research in information retrieval inspired by quantum theory. University of Glasgow (2008)

    Google Scholar 

  69. Feynman, R.P.: The concept of probability in quantum mechanics. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, California (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Mumtaz Al-Dabbagh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Dabbagh, M.M., Salim, N., Saeed, F. (2020). Methods to Improve Ranking Chemical Structures in Ligand-Based Virtual Screening. In: Saeed, F., Mohammed, F., Gazem, N. (eds) Emerging Trends in Intelligent Computing and Informatics. IRICT 2019. Advances in Intelligent Systems and Computing, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-33582-3_25

Download citation

Publish with us

Policies and ethics