Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 275 Accesses

Abstract

In this chapter, we shall discuss entropy in the context of the steady-state quantum transport problem. The work presented here deals with noninteracting fermions. We consider situations where we have a few reservoirs which exchange particles and energy with each other through a central scattering region. The distribution within the reservoirs, specified by their temperature and chemical potential, set the boundary conditions for the scattering problem. The scattering basis provides the most natural framework for the analysis of this problem. We derive the exact local entropy in the scattering basis and show that it is additive over subspaces of the one-body Hilbert space. We systematically develop the entropies that would be inferred by a local observer with access to varying degrees of information about the system. We prove inequalities connecting these entropy measures and find that the least knowledgeable formulation leads to the greatest entropy. We also prove statements of the third law of thermodynamics for open quantum systems in equilibrium and in nonequilibrium steady states. Finally, appropriately normalized (per-state) local entropies are defined and are used to quantify the departure from local equilibrium. We provide exact results in the absence of many-body interactions but only a working ansatz in their presence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is usual to include a prefactor of k B which we here set to unity.

  2. 2.

    For clarity of notation, Fock-space operators are written with a hat, while matrices defined in the one-body Hilbert space of the system are written without a hat.

  3. 3.

    As mentioned previously, we use the term matrices to highlight the fact that they are not operators in the Fock space but are defined on the one-body Hilbert space of the system.

  4. 4.

    \(f_{\mathcal {A}}\) is a generalization to any subspace \(\mathcal {A}\) of the nonequilibrium distribution function f s(ω), as introduced in Chap. 2, which selects the subspace defined by the probe-system coupling Γp.

  5. 5.

    Furthermore, in their attempt to extend the notion of heat to the nonequilibrium setting, Esposito et al. [26] seem to be under the misapprehension that heat is a state function in standard thermodynamics.

  6. 6.

    Although we use the position-local subspace in this section, the results of course hold for any subspace of the one-body Hilbert space \(\mathcal {H}\) of the system. In this section, we also drop the subscript in \(\mathcal {H}_{1}\), for brevity of notation, to mean the one-body Hilbert space of the system.

  7. 7.

    The mean local occupancy is in fact the particle density and similarly the mean local energy is the energy density since, in the position-local basis, the projection operator P(x) obeys Eq. (5.65).

  8. 8.

    The y-axis in Fig. 5.3 indicates Sk B, where k B is the Boltzmann constant. It has been set to unity k B = 1 in all the definitions of the entropies appearing in this chapter including in Sect. 5.7. However, whenever we cite numerical values for the temperatures in [K] (e.g., in Fig. 5.4), it is understood that its conversion to the appropriate energy units ([eV] for our systems) is accompanied by the appropriate numerical value of k B.

References

  1. J. von Neumann, Mathematical Foundations of Quantum Mechanics. Princeton Landmarks in Mathematics and Physics (Princeton University Press, Princeton, 1996). Translation from German edition (October 28, 1996)

    Google Scholar 

  2. C.A. Stafford, A. Shastry, J. Chem. Phys. 146(9), 092324 (2017). https://doi.org/10.1063/1.4975810. http://dx.doi.org/10.1063/1.4975810

    Article  ADS  Google Scholar 

  3. L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edn. (Butterworth-Heinemann, Oxford, 1980), pp. 160–161

    Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. (Cambridge University Press, New York, 2011)

    MATH  Google Scholar 

  5. M. Büttiker, Phys. Rev. Lett. 65(23), 2901 (1990). https://doi.org/10.1103/PhysRevLett.65.2901

    Article  ADS  Google Scholar 

  6. V. Gasparian, T. Christen, M. Büttiker, Phys. Rev. A 54, 4022 (1996)

    Article  ADS  Google Scholar 

  7. S. Hershfield, Phys. Rev. Lett. 70, 2134 (1993). https://doi.org/10.1103/PhysRevLett.70.2134. https://link.aps.org/doi/10.1103/PhysRevLett.70.2134

    Article  ADS  Google Scholar 

  8. G. Stefanucci, R. van Leeuwen, Nonequilibrium Many-Body Theory Of Quantum Systems: A Modern Introduction (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  9. C.A. Stafford, Phys. Rev. B 93, 245403 (2016). https://doi.org/10.1103/PhysRevB.93.245403. http://link.aps.org/doi/10.1103/PhysRevB.93.245403

    Article  ADS  Google Scholar 

  10. A. Shastry, C.A. Stafford, Phys. Rev. B 94, 155433 (2016). https://doi.org/10.1103/PhysRevB.94.155433. http://link.aps.org/doi/10.1103/PhysRevB.94.155433

    Article  ADS  Google Scholar 

  11. H. Pothier, S. Guéron, N.O. Birge, D. Esteve, M.H. Devoret, Phys. Rev. Lett. 79, 3490 (1997). https://doi.org/10.1103/PhysRevLett.79.3490. https://link.aps.org/doi/10.1103/PhysRevLett.79.3490

    Article  ADS  Google Scholar 

  12. H. Ness, Phys. Rev. B 89, 045409 (2014). https://doi.org/10.1103/PhysRevB.89.045409. http://link.aps.org/doi/10.1103/PhysRevB.89.045409

    Article  ADS  Google Scholar 

  13. J.L.W.V. Jensen, Acta Mathematica 30(1), 175 (1906). https://doi.org/10.1007/BF02418571. http://dx.doi.org/10.1007/BF02418571

    Article  MathSciNet  Google Scholar 

  14. A. Shastry, Y. Xu, C. A. Stafford, ArXiv e-prints 1904.11628 (2019)

    Google Scholar 

  15. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965)

    Google Scholar 

  16. M. Kolár, D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Phys. Rev. Lett. 109, 090601 (2012). https://doi.org/10.1103/PhysRevLett.109.090601. https://link.aps.org/doi/10.1103/PhysRevLett.109.090601

    Article  ADS  Google Scholar 

  17. B. Cleuren, B. Rutten, C. Van den Broeck, Phys. Rev. Lett. 108, 120603 (2012). https://doi.org/10.1103/PhysRevLett.108.120603. https://link.aps.org/doi/10.1103/PhysRevLett.108.120603

    Article  ADS  Google Scholar 

  18. A. Levy, R. Alicki, R. Kosloff, Phys. Rev. Lett. 109, 248901 (2012). https://doi.org/10.1103/PhysRevLett.109.248901. https://link.aps.org/doi/10.1103/PhysRevLett.109.248901

    Article  ADS  Google Scholar 

  19. A. Levy, R. Alicki, R. Kosloff, Phys. Rev. E 85, 061126 (2012). https://doi.org/10.1103/PhysRevE.85.061126. https://link.aps.org/doi/10.1103/PhysRevE.85.061126

    Article  ADS  Google Scholar 

  20. R. Kosloff, Entropy 15(6), 2100 (2013). https://doi.org/10.3390/e15062100. http://www.mdpi.com/1099-4300/15/6/2100

    Article  ADS  MathSciNet  Google Scholar 

  21. L.A. Wu, D. Segal, P. Brumer, Sci. Rep. 3, 1824 EP (2013). https://doi.org/10.1038/srep01824. Article

  22. L. Masanes, J. Oppenheim, Nat. Commun. 8 (2017). https://doi.org/10.1038/ncomms14538

  23. G.W. Ford, R.F. O’Connell, Physica E 29, 82 (2005). https://doi.org/10.1016/j.physe.2005.05.004. https://doi.org/10.1016/j.physe.2005.05.004

    Article  ADS  Google Scholar 

  24. R.F. O’Connell, J. Stat. Phys. 124(1), 15 (2006). https://doi.org/10.1007/s10955-006-9151-6. https://doi.org/10.1007/s10955-006-9151-6

  25. T.M. Nieuwenhuizen, A.E. Allahverdyan, Phys. Rev. E 66, 036102 (2002). https://doi.org/10.1103/PhysRevE.66.036102. https://link.aps.org/doi/10.1103/PhysRevE.66.036102

    Article  ADS  Google Scholar 

  26. M. Esposito, M.A. Ochoa, M. Galperin, Phys. Rev. Lett. 114, 080602 (2015). https://doi.org/10.1103/PhysRevLett.114.080602. http://link.aps.org/doi/10.1103/PhysRevLett.114.080602

    Article  ADS  Google Scholar 

  27. M.F. Ludovico, J.S. Lim, M. Moskalets, L. Arrachea, D. Sánchez, Phys. Rev. B 89, 161306 (2014). https://doi.org/10.1103/PhysRevB.89.161306. https://link.aps.org/doi/10.1103/PhysRevB.89.161306

    Article  ADS  Google Scholar 

  28. M.F. Ludovico, L. Arrachea, M. Moskalets, D. Sánchez, Phys. Rev. B 97, 041416 (2018). https://doi.org/10.1103/PhysRevB.97.041416. https://link.aps.org/doi/10.1103/PhysRevB.97.041416

    Article  ADS  Google Scholar 

  29. A. Bruch, M. Thomas, S. Viola Kusminskiy, F. von Oppen, A. Nitzan, Phys. Rev. B 93, 115318 (2016). https://doi.org/10.1103/PhysRevB.93.115318. https://link.aps.org/doi/10.1103/PhysRevB.93.115318

    Article  ADS  Google Scholar 

  30. J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958)

    Article  Google Scholar 

  31. A. Bruch, C. Lewenkopf, F. von Oppen, Phys. Rev. Lett. 120, 107701 (2018). https://doi.org/10.1103/PhysRevLett.120.107701. https://link.aps.org/doi/10.1103/PhysRevLett.120.107701

    Article  ADS  Google Scholar 

  32. T. Gramespacher, M. Büttiker, Phys. Rev. B 56, 13026 (1997). https://doi.org/10.1103/PhysRevB.56.13026. https://link.aps.org/doi/10.1103/PhysRevB.56.13026

    Article  ADS  Google Scholar 

  33. J.P. Bergfield, S.M. Story, R.C. Stafford, C.A. Stafford, ACS Nano 7(5), 4429 (2013). https://doi.org/10.1021/nn401027u

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shastry, A. (2019). Entropy. In: Theory of Thermodynamic Measurements of Quantum Systems Far from Equilibrium. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-33574-8_5

Download citation

Publish with us

Policies and ethics