Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 268 Accesses

Abstract

In Chap. 2 we found that the second law of thermodynamics imposes strong restrictions on what can be considered a meaningful thermodynamic measurement. We ask a question motivated by the third law of thermodynamics: What is the coldest possible temperature one can measure in a nonequilibrium quantum system? We have discussed how to measure temperature and voltage in the previous chapter. Most importantly, we realized that temperature and voltage have to be measured simultaneously to ensure uniqueness of the measurement. Here we show that absolute zero cannot be reached for a nonequilibrium quantum system, but arbitrarily low temperatures are, in principle, possible. In quantum coherent conductors, low temperatures result locally when there is destructive interference of “hot” electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The exact solution to the Eq. (3.30) with T 1 → 0 is

    $$\displaystyle \begin{aligned} T_{p}=T_{2}\left(\frac{\sqrt{1 + 4\lambda_{1}^{2}}-1}{2\lambda_{1}}\right)^{\frac{1}{2}}, \end{aligned}$$

    where λ 1 is defined in Eq. (3.39) and simplifies to

    $$\displaystyle \begin{aligned} \lambda_{1}=\frac{7\pi^{2}}{20}\frac{\mathcal{T}_{p2}^{(2)}(k_{B}T_{2})^{2}}{\mathcal{T}_{p1}}, \end{aligned}$$

    a factor that appears in Eq. (3.32).

  2. 2.

    It is necessary to minimize the ratio of transmissions to find the temperature minima since it is computationally prohibitive to calculate the temperatures at various points in the search space, within each iteration of the optimization algorithm.

  3. 3.

    I would like to thank Justin Bergfield for modeling the tip-sample coupling.

References

  1. A. Shastry, C.A. Stafford, Phys. Rev. B 92, 245417 (2015). https://doi.org/10.1103/PhysRevB.92.245417. http://link.aps.org/doi/10.1103/PhysRevB.92.245417

    Article  ADS  Google Scholar 

  2. J.P. Bergfield, S.M. Story, R.C. Stafford, C.A. Stafford, ACS Nano 7(5), 4429 (2013). https://doi.org/10.1021/nn401027u

    Article  Google Scholar 

  3. J. Meair, J.P. Bergfield, C.A. Stafford, P. Jacquod, Phys. Rev. B 90, 035407 (2014). https://doi.org/10.1103/PhysRevB.90.035407. http://link.aps.org/doi/10.1103/PhysRevB.90.035407

    Article  ADS  Google Scholar 

  4. J.P. Bergfield, C.A. Stafford, Phys. Rev. B 90, 235438 (2014). https://doi.org/10.1103/PhysRevB.90.235438. http://link.aps.org/doi/10.1103/PhysRevB.90.235438

    Article  ADS  Google Scholar 

  5. J.P. Bergfield, M.A. Ratner, C.A. Stafford, M. Di Ventra, Phys. Rev. B 91, 125407 (2015). https://doi.org/10.1103/PhysRevB.91.125407. http://link.aps.org/doi/10.1103/PhysRevB.91.125407

    Article  ADS  Google Scholar 

  6. C.A. Stafford, Phys. Rev. B 93, 245403 (2016). https://doi.org/10.1103/PhysRevB.93.245403. http://link.aps.org/doi/10.1103/PhysRevB.93.245403

    Article  ADS  Google Scholar 

  7. A. Shastry, C.A. Stafford, Phys. Rev. B 94, 155433 (2016). https://doi.org/10.1103/PhysRevB.94.155433. http://link.aps.org/doi/10.1103/PhysRevB.94.155433

    Article  ADS  Google Scholar 

  8. J.K. Viljas, J.C. Cuevas, F. Pauly, M. Häfner, Phys. Rev. B 72(24), 241201(R) (2005)

    Google Scholar 

  9. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  10. U. Sivan, Y. Imry, Phys. Rev. B 33, 551 (1986). https://doi.org/10.1103/PhysRevB.33.551. http://link.aps.org/doi/10.1103/PhysRevB.33.551

    Article  ADS  Google Scholar 

  11. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  12. J. Heurich, J.C. Cuevas, W. Wenzel, G. Schön, Phys. Rev. Lett. 88, 256803 (2002)

    Article  ADS  Google Scholar 

  13. J.P. Bergfield, C.A. Stafford, Phys. Rev. B 79(24), 245125 (2009)

    Article  ADS  Google Scholar 

  14. J.P. Bergfield, M.A. Solis, C.A. Stafford, ACS Nano 4(9), 5314 (2010)

    Article  Google Scholar 

  15. Y. Dubi, M. Di Ventra, Phys. Rev. E 79, 042101 (2009). https://doi.org/10.1103/PhysRevE.79.042101. http://link.aps.org/doi/10.1103/PhysRevE.79.042101

    Article  ADS  Google Scholar 

  16. Y. Dubi, M. Di Ventra, Nano Lett. 9(1), 97 (2009)

    Article  ADS  Google Scholar 

  17. Y.J. Yu, M.Y. Han, S. Berciaud, A.B. Georgescu, T.F. Heinz, L.E. Brus, K.S. Kim, P. Kim, Appl. Phys. Lett. 99(18), 183105 (2011). http://dx.doi.org/10.1063/1.3657515. http://scitation.aip.org/content/aip/journal/apl/99/18/10.1063/1.3657515

    Article  ADS  Google Scholar 

  18. K. Kim, J. Chung, G. Hwang, O. Kwon, J.S. Lee, ACS Nano 5(11), 8700 (2011). https://doi.org/10.1021/nn2026325. http://dx.doi.org/10.1021/nn2026325. PMID: 21999681

    Article  Google Scholar 

  19. K. Kim, W. Jeong, W. Lee, P. Reddy, ACS Nano 6(5), 4248 (2012). https://doi.org/10.1021/nn300774n. http://dx.doi.org/10.1021/nn300774n. PMID: 22530657

    Article  Google Scholar 

  20. F. Menges, H. Riel, A. Stemmer, B. Gotsmann, Nano Lett. 12(2), 596 (2012). https://doi.org/10.1021/nl203169t. http://dx.doi.org/10.1021/nl203169t. PMID: 22214277

    Article  ADS  Google Scholar 

  21. A. Caso, L. Arrachea, G.S. Lozano, Phys. Rev. B 81(4), 041301 (2010). https://doi.org/10.1103/PhysRevB.81.041301

    Article  ADS  Google Scholar 

  22. A. Caso, L. Arrachea, G.S. Lozano, Phys. Rev. B 83, 165419 (2011). https://doi.org/10.1103/PhysRevB.83.165419. http://link.aps.org/doi/10.1103/PhysRevB.83.165419

    Article  ADS  Google Scholar 

  23. H. Song, Y. Kim, Y.H. Jang, H. Jeong, M.A. Reed, T. Lee, Nature 462(7276), 1039 (2009). http://dx.doi.org/10.1038/nature08639

    Article  ADS  Google Scholar 

  24. L.G.C. Rego, G. Kirczenow, Phys. Rev. Lett. 81(1), 232 (1998)

    Article  ADS  Google Scholar 

  25. L.G.C. Rego, G. Kirczenow, Phys. Rev. B 59(20), 13080 (1999)

    Article  ADS  Google Scholar 

  26. C.J. Chen, Introduction to Scanning Tunneling Microscopy, 2nd edn. (Oxford University Press, New York, 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shastry, A. (2019). Coldest Measurable Temperature. In: Theory of Thermodynamic Measurements of Quantum Systems Far from Equilibrium. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-33574-8_3

Download citation

Publish with us

Policies and ethics