Skip to main content

Thermodynamics of the Arctic Atmosphere

  • Chapter
  • First Online:
Physics and Chemistry of the Arctic Atmosphere

Part of the book series: Springer Polar Sciences ((SPPS))

Abstract

In a such changing environment like the Arctic, improving the understanding of the thermodynamic state and processes of the atmosphere is critical for the development of accurate prediction and climatic models. This is fundamental for example for studies on sea-ice development as well as on cloud formation. Taking into account the above remarks, it is very important to know the pressure, temperature and moisture conditions of the Arctic atmosphere throughout the year and over the whole tropospheric and stratospheric altitude range. Furthermore, knowing these data is necessary to realistically evaluate the radiative effects involving both the short-wave and long-wave radiation fluxes, which regulate the energy balance of the Arctic surface-atmosphere system.

In this contribution, continuous measurements of these parameters by means of radiosonde in the Arctic are reviewed, including correction algorithms, in order to obtain detailed climatologies in terms of seasonal, inter-annual and vertical behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blackmore, W. H., & Taubvurtzel, B. (1999). Environmental chamber tests on NWS radiosonde humidity sensors. In: Preprints of the 11th symposium on meteorological observations and instrumentation. American Meteorological Society, Dallas, Texas (USA), pp. 259–262.

    Google Scholar 

  • Bodhaine, B. A., Wood, N. B., Dutton, E. G., & Slusser, J. R. (1999). On Rayleigh optical depth calculations. Journal of Atmospheric and Oceanic Technology, 16(11), 1854–1861. https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2.

    Article  Google Scholar 

  • Bradley, R. S., Keimig, F. T., & Diaz, H. F. (1992). Climatology of surface-based inversions in the North American Arctic. Journal of Geophysical Research, Atmospheres, 97(D14), 15699–15712. https://doi.org/10.1029/92JD01451.

    Article  Google Scholar 

  • Cady-Pereira, K. E., Shephard, M. W., Turner, D. D., Mlawer, E. J., Clough, S. A., & Wagner, T. J. (2008). Improved daytime column-integrated precipitable water vapor from Vaisala radiosonde humidity sensors. Journal of Atmospheric and Oceanic Technology, 25(6), 873–883. https://doi.org/10.1175/2007JTECHA1027.1.

    Article  Google Scholar 

  • Central Aerological Observatory (CAO). (2003). Guide to hydrometeorological stations and posts, issue III, temperature – Wind Sounding of the Atmosphere, St. Petersburg (Russia) (in Russian), 312 pp.

    Google Scholar 

  • Dinelli, B. M., Arnone, E., Brizzi, G., Carlotti, M., Castelli, E., Magnani, L., Papandrea, E., Prevedelli, M., & Ridolfi, M. (2010). The MIPAS2D database of MIPAS/ENVISAT measurements retrieved with a multi-target 2-dimensional tomographic approach. Atmospheric Measurement Techniques, 3(2), 355–374. https://doi.org/10.5194/amt-3-355-2010.

    Article  Google Scholar 

  • Dubin, M., Sissenwine, N., & Teweles, S. (1966). U. S. Standard Atmosphere Supplements, 1966. Environmental Science Services Administration, National Aeronautics and Space Administration, United States Air Force, Washington, DC, 20402, 289 pp.

    Google Scholar 

  • He, W., Ho, S., Chen, H., Zhou, X., Hunt, D., & Kuo, Y.-H. (2009). Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophysical Research Letters, 36, L17807. https://doi.org/10.1029/2009GL038712.

    Article  Google Scholar 

  • Highwood, E. J., Hoskins, B. J., & Berrisford, P. (2007). Properties of the Arctic tropopause. Quarterly Journal of the Royal Meteorological Society, 126(565). https://doi.org/10.1002/qj.49712656515.

    Article  Google Scholar 

  • Ho, S., Peng, L., & Vömel, H. (2017). Characterization of the long-term radiosonde temperature biases in the upper troposphere and lower stratosphere using COSMIC and Metop-A/GRAS data from 2006 to 2014. Atmospheric Chemistry and Physics, 17, 4493–4511. https://doi.org/10.5194/acp-17-4493-2017.

    Article  Google Scholar 

  • Holton, J. R., Haynes, P., McIntyre, M. E., Douglas, A., Rood, R., & Pfister, L. (1995). Stratosphere – Troposphere exchange. Reviews of Geophysics, 33(4), 403–439.

    Article  Google Scholar 

  • Huovila, S., & Tuominen, A. (1991, January 14–18). Influence of radiosonde lag errors on upper-air climatological data, paper presented at the Seventh Symposium on Meteorological Observations and Instrumentation, Special Sessions on Laser Atmospheric Studies, pp. 237–242, American Meteorological Society, New Orleans, LA.

    Google Scholar 

  • Jorgenson, M. T., Shur, Y. L., & Pullman, E. R. (2006). Abrupt increase in permafrost degradation in Arctic Alaska. Geophysical Research Letters, 33, L02503. https://doi.org/10.1029/2005GL024960.

    Article  Google Scholar 

  • Kahl, J. D., Serreze, M. C., & Schnell, R. C. (1992). Tropospheric low-level temperature inversions in the Canadian Arctic. Atmosphere-Ocean, 30(4), 511–529. https://doi.org/10.1080/07055900.1992.9649453.

    Article  Google Scholar 

  • Luers, J. K. (1997). Temperature error of the Vaisala RS90 radiosonde. Journal of Atmospheric and Oceanic Technology, 14(6), 1520–1532. https://doi.org/10.1175/1520-0426(1997)014<1520:TEOTVR>2.0.CO;2.

    Article  Google Scholar 

  • Luers, J. K., & Eskridge, R. E. (1995). Temperature corrections for the VIZ and Vaisala radiosondes. Journal of Applied Meteorology, 34(6), 1241–1253. https://doi.org/10.1175/1520-0450(1995)034<1241:TCFTVA>2.0.CO;2.

    Article  Google Scholar 

  • Luers, J. K., & Eskridge, R. E. (1998). Use of radiosonde temperature data in climate studies. Journal of Climate, 11(5), 1002–1019. https://doi.org/10.1175/1520-0442(1998)011<1002:UORTDI>2.0.CO;2.

    Article  Google Scholar 

  • Mattioli, V., Westwater, E. R., Cimini, D., Liljegren, J. S., Lesht, S, Gutman, S., &Schmidlin, F. (2005, March 14–18). Analysis of radiosonde and PWV data from the 2004 North slope of Alaska Arctic winter radiometric experiment. In Proceedings of the Fifteenth ARM Science Team Meeting, Daytona Beach, Florida, 29 pp.

    Google Scholar 

  • Mattioli, V., Westwater, E. R., Cimini, D., Liljegren, J. C., Lesht, B. M., Gutman, S. I., & Schmidlin, F. J. (2007). Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North slope of Alaska Arctic winter radiometric experiment. Journal of Atmospheric and Oceanic Technology, 24(3), 415–431. https://doi.org/10.1175/JTECH1982.1.

    Article  Google Scholar 

  • Maturilli, M., Herber, A., & König-Langlo, G. (2013). Climatology and time series of surface meteorology in Ny-Ã…lesund, Svalbard. Earth System Science Data, 5, 155–163. https://doi.org/10.5194/essd-5-155-2013.

    Article  Google Scholar 

  • Miloshevich, L. M., Vömel, H., Paukkunen, A., Heymsfield, A. J., & Oltmans, S. J. (2001). Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. Journal of Atmospheric and Oceanic Technology, 18(2), 135–156. https://doi.org/10.1175/1520-0426(2001)018<0135:CACORH>2.0.CO;2.

    Article  Google Scholar 

  • Miloshevich, L. M., Paukkunen, A., Vömel, H., & Oltmans, S. J. (2004). Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. Journal of Atmospheric and Oceanic Technology, 21(9), 1305–1327. https://doi.org/10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2.

    Article  Google Scholar 

  • Miloshevich, L. M., Vömel, H., Whiteman, D. N., Lesht, B. M., Schmidlin, F. J., & Russo, F. (2006). Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation, Journal of Geophysical Research, Atmospheres, 111, D09S10, https://doi.org/10.1029/2005JD006083.

  • Miloshevich, L. M., Vömel, H., Whiteman, D. N., & Leblanc, T. (2009). Accuracy assessment and corrections of Vaisala RS92 radiosonde water vapor measurements. Journal of Geophysical Research, Atmospheres, 114, D11305. https://doi.org/10.1029/2008JD011565.

    Article  Google Scholar 

  • Moradi, I., Buehler, S. A., John, V. O., Reale, A., & Ferraro, R. R. (2013). Evaluating instrumental inhomogeneities in global radiosonde upper tropospheric humidity data using microwave satellite data. IEEE Transactions on Geoscience and Remote Sensing, 51(6), 3615–3624. https://doi.org/10.1109/TGRS.2012.2220551.

    Article  Google Scholar 

  • Murphy, D. M., & Koop, T. (2005). Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quarterly Journal of the Royal Meteorological Society, 131(608), 1539–1565. https://doi.org/10.1256/qj.04.94.

    Article  Google Scholar 

  • Muscari, G., C. Di Biagio, A. di Sarra, M. Cacciani, S. E. Ascanius, P. P. Bertagnolio, C. Cesaroni1, R. L. de Zafra, P. Eriksen, G. Fiocco, I. Fiorucci, and D. Fuà (2014), Observations of surface radiation and stratospheric processes at Thule Air Base, Greenland, during the IPY, Annals of Geophysics, Volume 57, 3, SS0323, doi:https://doi.org/10.4401/ag-6382.

  • Natali, S. M., Schuur, E. A. G., Mauritz, M., Schade, J. D., Celis, G., Crummer, K. G., Johnston, C., Krapek, J., Pegoraro, E., Salmon, V. G., & Webb, E. E. (2015). Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. Journal of Geophysical Research, Biogeosciences, 120(3), 525–537. https://doi.org/10.1002/2014JG002872.

    Article  Google Scholar 

  • Rowe, P. M., Miloshevich, L. M., Turner, D. D., & Walden, V. P. (2008). Dry bias in Vaisala RS90 radiosonde humidity profiles over Antarctica. Journal of Atmospheric and Oceanic Technology, 25(9), 1529–1541. https://doi.org/10.1175/2008JTECHA1009.1.

    Article  Google Scholar 

  • Schroeder, S. R. (2009, January 11–15). Homogenizing the Russian Federation upper air climate record by adjusting radiosonde temperatures and dew points for instrument changes, Oral presentation at the 21st Conference on Climate Variability and Change, 89th American Meteorological Society Annual Meeting, Phoenix (Arizona).

    Google Scholar 

  • Tomasi, C., Vitale, V., & De Santis, L. V. (1998). Relative optical mass functions for air, water vapour, ozone and nitrogen dioxide in atmospheric models presenting different latitudinal and seasonal conditions, Meteorology and Atmospheric Physics, 65(1–2), 11–30. https://doi.org/10.1007/BF01030266.

  • Tomasi, C., Cacciari, A., Vitale, V., Lupi, A., Lanconelli, C., Pellegrini, A., & Grigioni, P. (2004). Mean vertical profiles of temperature and absolute humidity from a twelve-year radiosounding data-set at Terra Nova Bay (Antarctica). Atmospheric Research, 71(3), 139–169. https://doi.org/10.1016/j.atmosres.2004.03.009.

    Article  Google Scholar 

  • Tomasi, C., Vitale, V., Petkov, B., Lupi, A., & Cacciari, A. (2005). Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres. Applied Optics, 44(16), 3320–3341. https://doi.org/10.1364/AO.44.003320.

    Article  Google Scholar 

  • Tomasi, C., Petkov, B., Benedetti, E., Vitale, V., Pellegrini, A., Dargaud, G., De Silvestri, L., Grigioni, P., Fossat, E., Roth, W. L., & Valenziano, L. (2006). Characterization of the atmospheric temperature and moisture conditions above Dome C (Antarctica) during austral summer and fall months. Journal of Geophysical Research, Atmospheres, 111, D20, D20305. https://doi.org/10.1029/2005JD006976.

    Article  Google Scholar 

  • Tomasi, C., Petkov, B., Stone, R. S., Benedetti, E., Vitale, V., Lupi, A., Mazzola, M., Lanconelli, C., Herber, A., & Von Hoyningen-Huene, W. (2010). Characterizing polar atmospheres and their effect on Rayleigh-scattering optical depth. Journal of Geophysical Research, Atmospheres, 115, D02205. https://doi.org/10.10129/2009JD012852.

    Article  Google Scholar 

  • Tomasi, C., Petkov, B., Dinelli, B. M., Castelli, E., Arnone, E., & Papandrea, E. (2011a). Monthly mean vertical profiles of pressure, temperature, and water vapour volume mixing ratio in the polar stratosphere and low mesosphere from a multi-year set of MIPAS-ENVISAT limb-scanning measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 73(16), 2237–2271. https://doi.org/10.1016/j.jastp.2011.06.018.

    Article  Google Scholar 

  • Tomasi, C., Petkov, B., Benedetti, E., Valenziano, L., & Vitale, V. (2011b). Analysis of a 4 year radiosonde data set at Dome C for characterizing temperature and moisture conditions of the Antarctic atmosphere. Journal of Geophysical Research, Atmospheres, 116, D15, D15304. https://doi.org/10.1029/2011JD015803.

    Article  Google Scholar 

  • Tomasi, C., Petkov, B. H., & Benedetti, E. (2012). Annual cycles of pressure, temperature, absolute humidity and precipitable water from the radiosoundings performed at Dome C, Antarctica, over the 2005 – 2009 period. Antarctic Science, 24(6), 637–658. https://doi.org/10.1017/S0954102012000405.

    Article  Google Scholar 

  • Turner, D. D., Lesht, B. M., Clough, S. A., Liljegren, J. C., Revercomb, H. E., & Tobin, D. C. (2003). Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. Journal of Atmospheric and Oceanic Technology, 20(1), 117–132. https://doi.org/10.1175/1520-0426(2003)020<0117:DBAVIV>2.0.CO;2.

    Article  Google Scholar 

  • Wang, J., & Young, K. (2005. June 19–23). Comparisons of 7-year radiosonde data from two neighboring stations and estimation of random error variances for four types of radiosondes. Presented at the 13th Symposium on Meteorological Observations and Instrumentation, Savannah (Georgia, USA).

    Google Scholar 

  • Wang, J., Cole, H. L., Carlson, D. J., Miller, E. R., Beierle, K., Paukkunen, A., & Laine, T. K. (2002). Corrections of humidity measurement errors from the Vaisala RS80 radiosonde – Application to TOGA COARE data. Journal of Atmospheric and Oceanic Technology, Volume, 19(7), 981–1002. https://doi.org/10.1175/1520-0426(2002)019<0981:COHMEF>2.0.CO;2.

    Article  Google Scholar 

  • Wang, J., Carlson, D. J., Parsons, D. B., Hock, T. F., Lauritsen, D., Cole, H. L., Beierle, K., & Chamberlain, E. (2003). Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication. Geophysical Research Letters, 30(16), 1860. https://doi.org/10.1029/2003GL016985.

    Article  Google Scholar 

  • Zaitseva, N. A. (1993). Historical developments in radiosonde systems in the former Soviet Union. Bullettin of the American Meteorological Society, 74, 1893–1900. https://doi.org/10.1175/1520-0477(1993)074<1893:HDIRSI>2.0.CO;2.

    Article  Google Scholar 

  • Zängl, G., & Hoinka, K. P. (2001). The tropopause in the polar regions. Journal of Climate, 14(14), 3117–3139. https://doi.org/10.1175/1520-0442(2001)014<3117:TTITPR>2.0.CO;2.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Atmospheric Science, University of Wyoming, for the downloading of the radio-sounding data sets collected from 2001 to 2015 at the 14 following radio-sounding stations located in the Arctic region: Barrow, Inuvik, Cambridge Bay, Resolute, Eureka, Alert, Aasiaat, Danmarkshavn, Jan Mayen, Ny-Ålesund, Sodankylä, Ostrov Dikson, Tiksi, and Cherskij.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Mazzola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomasi, C., Petkov, B.H., Drofa, O., Mazzola, M. (2020). Thermodynamics of the Arctic Atmosphere. In: Kokhanovsky, A., Tomasi, C. (eds) Physics and Chemistry of the Arctic Atmosphere. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-33566-3_2

Download citation

Publish with us

Policies and ethics