Skip to main content

Climate Change in the Arctic

  • Chapter
  • First Online:
Physics and Chemistry of the Arctic Atmosphere

Part of the book series: Springer Polar Sciences ((SPPS))

Abstract

Observations over the last decades showed large changes in the Arctic regions with a strong warming of the Arctic, which is about twice that of the global mean warming. The largest warming rates with up to 10 K since 1980 are reached near the surface in the Chukchi Sea in autumn and in the Barents Sea in winter. Changes in Arctic climate are a result of complex interactions between the cryosphere, atmosphere, and ocean and different processes contribute to the amplified warming signal such as the ice albedo feedback, changes in clouds and water vapour, enhanced meridional energy transport in the atmosphere and in the ocean, vertical mixing in Arctic winter inversions and temperature feedbacks.

The observed warming is concurrent with a large reduction of the sea ice cover particularly in summer and autumn. The impact of Arctic amplification and sea ice retreat on the atmospheric circulation is still discussed. Positive winter sea level pressure trends along the Siberian Arctic coast have been linked to negative winter temperature trends over Central Asia.

Ocean heat and freshwater transports into and out of the Arctic undergo changes as well with potentially strong consequences for deep water formation in the North Atlantic Ocean and the entire large scale oceanic circulation.

Climate projections indicate that the Arctic will continue to warm faster than the rest of the world in the twenty-first century. Whether summer sea ice is going to melt completely depends on the future emission scenario.

This chapter will review the state of knowledge of mechanisms of the observed changes, the potential consequences of future Arctic warming for sea ice, ocean and atmosphere, and uncertainties due to emission scenarios, model shortcomings and natural variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACIA. (2005). Arctic climate impact assessment (p. 1042). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Alexander, M., Bhatt, U., Walsh, J., Timlin, M., Miller, J., & Scott, J. (2004). The atmospheric response to realistic Arctic Sea ice anomalies in an AGCM during winter. Journal of Climate, 17, 890–905.

    Article  Google Scholar 

  • Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., Johnson, D. R. (2010). World Ocean Atlas 2009, Volume 2: Salinity. S. Levitus, Ed., NOAA Atlas NESDIS 69, U.S. Government Printing Office, Washington, DC, 184 pp.

    Google Scholar 

  • Barnes, E. A. (2013). Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophysical Research Letters, 40, 4734–4739.

    Article  Google Scholar 

  • Bintanja, R., Graversen, R. G., & Hazeleger, W. (2011). Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nature Geoscience Letters. https://doi.org/10.1038/NGEO1285.

    Article  Google Scholar 

  • Bonan, D. B., Armour, K. C., Roe, G. H., Siler, N., & Feldl, N. (2018). Sources of uncertainty in the Meridional pattern of climate change. Geophysical Research Letters, 45(17), 9131–9140. https://doi.org/10.1029/2018GL079429.

    Article  Google Scholar 

  • Callaghan, T., Johansson, M., Key, J., Prowse, T., Ananicheva, M., & Klepikov, A. (2011). Feedbacks and interactions: From the Arctic cryosphere to the climate system. Ambio, 40, 75–86. https://doi.org/10.1007/s13280-011-0215-8.

    Article  Google Scholar 

  • Chapman, W. L., & Walsh, J. E. (2007). Simulations of Arctic temperature and pressure by global coupled models. Journal of Climate, 20, 609–632. https://doi.org/10.1175/JCLI4026.1.

    Article  Google Scholar 

  • Cohen, J., Barlow, M., Kushner, P. J., & Saito, K. (2007). Stratosphere-troposphere coupling and links with Eurasian land surface variability. Journal of Climate, 20, 5335–5343.

    Article  Google Scholar 

  • Cohen, J. L., Furtado, J. C., Barlow, M. A., Alexeev, V. A., & Cherry, J. E. (2012). Arctic warming, increasing snow cover and widespread boreal winter cooling. Environmental Research Letters, 7. https://doi.org/10.1088/1748-9326/7/1/014007.

    Article  Google Scholar 

  • Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., et al. (2014). Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627–637. https://doi.org/10.1038/NGEO2234.

    Article  Google Scholar 

  • Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S., & Schellnguber, H. J. (2014). Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proceedings of the National Academy of Sciences of the United States of America, 12331–12336.

    Google Scholar 

  • Coumou, D., Lehmann, J., & Beckmann, J. (2015). The weakening summer circulation in the northern hemisphere midlatitudes. Science, 348, 324–327. https://doi.org/10.1126/science. 1261768.

    Article  Google Scholar 

  • Davini, P., von Hardenberg, J., & Corti, S. (2015). Tropical origin for the impacts of the Atlantic multidecadal variability on the euro-Atlantic climate. Environmental Research Letters, 10, 094010. https://doi.org/10.1088/1748-9326/10/9/094010.

    Article  Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. The Quarterly Journal of the Royal Meteorological Society, 137, 553–597. https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Deser, C., Magnusdottir, G., Saravanan, R., & Philips, A. (2004). The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. Journal of Climate, 17, 2160–2176.

    Google Scholar 

  • Deser, C., Tomas, R., Alexander, M., & Lawrence, D. (2010). The seasonal atmospheric response to projected Arctic Sea ice loss in the late twenty-first century. Journal of Climate, 23, 333–351. https://doi.org/10.1175/2009JCLI3053.1.

    Article  Google Scholar 

  • Devasthale, A., Sedlar, J., Koenigk, T., & Fetzer, E. J. (2013). The thermodynamic state of the Arctic atmosphere observed by AIRS: Comparisons during the record minimum sea ice extentso f 2007 and 2012. Atmospheric Chemistry and Physics, 13, 7441–7450. https://doi.org/10.5194/acp-13-7441-2013.

    Article  Google Scholar 

  • Dickson, R., Meincke, J., & Malmberg, S. A. (1988). The “great salinity anomaly” in the northern North Atlantic, 1968-1982. Progress in Oceanography, 20, 103–151.

    Article  Google Scholar 

  • Ding, Q., Schweiger, A., L’Heureux, M., Battisti, D. S., Po-Chedley, S., Johnson, N. C., Blanchard-Wrigglesworth, E., Harnos, K., Zhang, Q., Eastman, R., & Steig, E. J. (2017). Influence of high-latitude atmospheric circulation changes on summertime Arctic Sea ice. Nature Climate Change. https://doi.org/10.1038/NCLIMATE3241.

    Article  Google Scholar 

  • Döscher, R., & Koenigk, T. (2013). Arctic rapid sea ice loss events in regional coupled climate scenario experiments. Ocean Science, os-2012-65. https://doi.org/10.5194/os-9-217-2013.

    Article  Google Scholar 

  • Dunn-Sigouin, E., & Son, S. W. (2013). Northern hemisphere blocking frequency and duration in the CMIP5 models. Journal of Geophysical Research – Atmospheres, 118, 1179–1188. https://doi.org/10.1002/jgrd.50143.

    Article  Google Scholar 

  • Fetterer, F., Knowles, K., Meier, W., Savoie, M., Windnagel, A. K. (2017). updated daily. Sea Ice Index, Version 3.0. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. doi: https://doi.org/10.7265/N5K072F8. Accessed September 2018.

  • Francis, J. A. (2017). Why are Arctic linkages to extreme weather still up in the air? The Bulletin of the American Meteorological Society, 98, 2551–2557.

    Article  Google Scholar 

  • Francis, J. A., & Vavrus, S. J. (2012). Evidence linking Arctic amplification to extreme weather in midlatitudes. Geophysical Research Letters, 39, L06801.

    Article  Google Scholar 

  • Francis, J. A., & Vavrus, S. J. (2015). Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10. https://doi.org/10.1088/1748-9326/10/1/014005.

    Article  Google Scholar 

  • Francis, J. A., Chan, W., Leathers, D. J., Miller, J. R., & Veron, D. E. (2009). Winter northern hemisphere weather patterns remember summer Arctic Sea-ice extent. Geophysical Research Letters, 36(L07503). https://doi.org/10.1029/2009GL037274.

    Article  Google Scholar 

  • Gao, Y., Sun, Y., Li, F., He, S., Sandven, S., Yan, Q., Zhang, Z., Lohmann, K., Keenlyside, N., Furevik, T., & Suo, L. (2015). Arctic Sea ice and Eurasian climate: A review. Advances in Atmospheric Sciences, 32, 92–114.

    Article  Google Scholar 

  • Garcia-Serrano, J., & Frankkignoul, C. (2014). High predictability of the winter euro-Atlantic climate from cryospheric variability. Nature Geoscience. https://doi.org/10.1038/NGEO2118.

    Article  Google Scholar 

  • Graversen, R. G., & Wang, M. (2009). Polar amplification in a coupled climate model with locked albedo. Climate Dynamics, 33, 629–643. https://doi.org/10.1007/s00382-009-0535-6.

    Article  Google Scholar 

  • Graversen, R. G., Mauritsen, T., Tjernström, T., Källén, E., & Svensson, G. (2008). Vertical structure of recent Arctic warming. Nature, 541. https://doi.org/10.1038/nature06502.

    Article  Google Scholar 

  • Guo, D., Gao, Y., Bethke, I., Gong, D., Johannessen, O. M., & Wang, H. (2014). Mechanism on how the spring Arctic Sea ice impacts the east Asian summer monsoon. Theoretical and Applied Climatology, 115, 107–119. https://doi.org/10.1007/s00704-013-0872-6.

    Article  Google Scholar 

  • Haak, H., Jungclaus, J., Mikolajewicz, U., & Latif, M. (2003). Formation and propagation of great salinity anomalies. Geophysical Research Letters, 30(9), 26/1–26/4.

    Article  Google Scholar 

  • Häkkinen, S. (1999). A simulation of thermohaline effects of a great salinity anomaly. Journal of Climate, (6), 1781–1795.

    Article  Google Scholar 

  • Hall, R., Erdélyi, R., Hanna, E., Jones, J. M., & Scaife, A. A. (2015). Drivers of North Atlantic polar front jet stream variability. International Journal of Climatology, 35, 1697–1720. https://doi.org/10.1002/joc.4121.

    Article  Google Scholar 

  • Hanna, E., Cropper, T. E., Hall, R. J., & Cappelen, J. (2016). Greenland blocking index 1851–2015: A regional climate change signal. International Journal of Climatology, 36, 4847–4861.

    Article  Google Scholar 

  • Holland, M. M., & Bitz, C. M. (2003). Polar amplification of climate change in coupled models. Climate Dynamics, 21, 221–232.

    Article  Google Scholar 

  • Honda, M., Inoue, J., & Yamane, S. (2009). Influence of low Arctic Sea-ice minima on anomalously cold Eurasian winters. Geophysical Research Letters, 36(L08707). https://doi.org/10.1029/2008GL037079.

  • Hopsch, S., Cohen, J., & Dethloff, K. (2012). Analysis of a link between fall Arctic Sea ice concentration and atmospheric patterns in the following winter. Tellus A, 64(18624). https://doi.org/10.3402/tellusa.v64i0.18264.

  • Hoskins, B., & Woollings, T. (2015). Persistent extratropical regimes and climate extremes. Current Climate Change Reports. https://doi.org/10.1007/s40641-015-0020-8.

    Article  Google Scholar 

  • Inoue, J., Masatake, H. E., & Koutarou, T. (2012). The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. Journal of Climate, 25(7), 2561–2568.

    Article  Google Scholar 

  • Jahn, A., Kay, J. E., Holland, M. M., & Hall, D. M. (2016). How predictable is the timing of a summer ice-free Arctic? Geophysical Research Letters, 43(17). https://doi.org/10.1002/2016GL070067.

    Article  Google Scholar 

  • Jaiser, R., Dethloff, K., & Handorf, D. (2013). Stratospheric response to Arctic Sea ice retreat and associated planetary wave propagation changes. Tellus A, 65, 19375. https://doi.org/10.3402/tellusa.v65i0.19375.

    Article  Google Scholar 

  • Kim, B. M., Son, S. W., Min, S. K., Jeong, J. H., Kim, S. J., Zhang, X., Shim, T., & Yoon, Y. H. (2014). Weakening of the stratospheric polar vortex by Arctic Sea-ice loss. Nature Communications, 5, 4646. https://doi.org/10.1038/ncomms5646.

    Article  Google Scholar 

  • Koenigk, T., & Brodeau, L. (2014). Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-earth. Climate Dynamics, 42, 3101–3120. https://doi.org/10.1007/s00382-013-1821-x.

    Article  Google Scholar 

  • Koenigk, T., & Brodeau, L. (2017). Arctic climate and its interaction with lower latitudes under different levels of anthropogenic warming in a global coupled climate model. Climate Dynamics, 49, 471–492. https://doi.org/10.1007/s00382-016-3354-6.

    Article  Google Scholar 

  • Koenigk, T., Mikolajewicz, U., Haak, H., & Jungclaus, J. (2006). Variability of Fram Strait sea ice export: Causes, impacts and feedbacks in a coupled climate model. Climate Dynamics, 26, 17–34. https://doi.org/10.1007/s00382-005-0060-1.

    Article  Google Scholar 

  • Koenigk, T., Mikolajewicz, U., Haak, H., & Jungclaus, J. (2007). Arctic freshwater export in the 20th and 21st century. Journal of Geophysical Research, 112. https://doi.org/10.1029/2006JG000274.

    Article  Google Scholar 

  • Koenigk, T., Döscher, R., & Nikulin, G. (2011). Arctic future scenario experiments with a coupled regional climate model. Tellus, 63A(1), 69–86. https://doi.org/10.1111/j.1600-0870.2010.00474.x.

    Article  Google Scholar 

  • Koenigk, T., Brodeau, L., Graversen, R. G., Karlsson, J., Svensson, G., Tjernström, M., Willen, U., & Wyser, K. (2013). Arctic climate change in 21st century CMIP5 simulations with EC-earth. Climate Dynamics, 40, 2720–2742. https://doi.org/10.1007/s00382-012-1505-y.

    Article  Google Scholar 

  • Koenigk, T., Berg, P., & Döscher, R. (2015). Arctic climate change in an ensemble of regional CORDEX simulations. Polar Research, 34, 24603. https://doi.org/10.3402/polar.v34.24603.

    Article  Google Scholar 

  • Koenigk, T., Caian, M., Nikulin, G., & Schimanke, S. (2016). Regional Arctic Sea ice variations as predictor for winter climate conditions. Climate Dynamics, 46, 317–337. https://doi.org/10.1007/s00382-015-2586-1.

    Article  Google Scholar 

  • Kosaka, Y., & Xie. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407. https://doi.org/10.1038/nature12534.

    Article  Google Scholar 

  • Letterly, A., Key, J., & Liu, Y. (2016). The influence of winter cloud on summer sea ice in the Arctic, 1983–2013. Journal of Geophysical Research – Atmospheres, 121. https://doi.org/10.1002/2015JD024316.

    Google Scholar 

  • Letterly, A., Key, J., & Liu, Y. (2018). Arctic climate: Changes in sea ice extent outweigh changes in snow cover. The Cryosphere, 12, 3373–3382. https://doi.org/10.5194/tc-12-3373-2018.

    Article  Google Scholar 

  • Liptak, J., & Strong, C. (2014). The winter atmospheric response to sea ice anomalies in the Barents Sea. Journal of Climate, 27, 914–924. https://doi.org/10.1175/JCLI-D-13-00186.1.

    Article  Google Scholar 

  • Liu, Y., & Key, J. (2014). Less winter cloud aids summer 2013 Arctic Sea ice return from 2012 minimum. Environmental Research Letters, 9, 044002. https://doi.org/10.1088/1748-9326/9/4/044002.

    Article  Google Scholar 

  • Liu, Y., & Key, J. (2016). Assessment of Arctic cloud cover anomalies in atmospheric reanalysis products using satellite data. Journal of Climate, 29, 6065–6083. https://doi.org/10.1175/JCLI-D-15-0861.1.

    Article  Google Scholar 

  • Liu, Y., Key, J. R., & Wang, X. (2008). The influence of changes in cloud cover on recent surface temperature trends in the Arctic. Journal of Climate, 21, 705–715.

    Article  Google Scholar 

  • Liu, Y., Key, J., & Wang, X. (2009). Influence of changes in sea ice concentration and cloud cover on recent Arctic surface temperature trends. Geophysical Research Letters, 36, L20710. https://doi.org/10.1029/2009GL040708.

    Article  Google Scholar 

  • Liu, Y., Key, J. R., Liu, Z., Wang, X., & Vavrus, S. J. (2012). A cloudier Arctic expected with diminishing sea ice. Geophysical Research Letters, 39, L05705. https://doi.org/10.1029/2012GL051251.

    Article  Google Scholar 

  • Liu, Y., Key, J., Vavrus, S., & Woods, C. (2018). Time evolution of cloud response to moisture intrusions into the Arctic during winter. Journal of Climate, 31(22), 9389–9405. https://doi.org/10.1175/JCLI-D-17-0896.1.

    Article  Google Scholar 

  • Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Johnson, D. R. (2010). World Ocean Atlas 2009, Volume 1: Temperature. S. Levitus, Ed., NOAA Atlas NESDIS 69, U.S. Government Printing Office, Washington, DC, 184 pp.

    Google Scholar 

  • Magnusdottir, G., Deser, C., & Saravanan, R. (2004). The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. Journal of Climate, 17(5), 857–876.

    Article  Google Scholar 

  • Masato, G., Hoskins, B. J., & Woollings, T. (2013). Winter and summer northern hemisphere blocking in CMIP5 models. Journal of Climate, 26, 7044–7059.

    Article  Google Scholar 

  • Massonnet, F., Fichefet, T., Goosse, H., Bitz, C. M., Philippon-Berthier, G., Holland, M. M., & Barriat, P. Y. (2012). Constraining projections of summer Arctic Sea ice. The Cryosphere, 6, 1383–1394. https://doi.org/10.5194/tcd-6-1383-2012.

    Article  Google Scholar 

  • McClelland, J., Dery, S., Peterson, B., & Holmes, R. M. (2006). A pan-Arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophysical Research Letters, 33, L06715. https://doi.org/10.1029/2006GL025753.

    Article  Google Scholar 

  • McCusker, K. E., Fyfe, K. C., & Sigmond, M. (2016). Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic Sea-ice loss. Nature Geoscience, 9, 838–842. https://doi.org/10.1038/NGEO2820.

    Article  Google Scholar 

  • McGraw, M., & Barnes, E. A. (2016). Seasonal sensitivity of the Eddy-driven jet to tropospheric heating in an idealized AGCM. Journal of Climate, 29. https://doi.org/10.1175/JCLI-D-15-0723.1.

    Article  Google Scholar 

  • Medeiros, D. C., Tomas, R. A., & Kay, J. E. (2011). Arctic inversion strength in climate models. Journal of Climate, 24, 4733–4740.

    Article  Google Scholar 

  • Meier, W., Hovelsrud, G., van Oort, B., Key, J., Kovacs, K., Michel, C., Haas, C., Granskog, M., Gerland, S., Perovich, D., Makshtas, A., & Reist, J. (2014). Arctic Sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Reviews of Geophysics, 51. https://doi.org/10.1002/2013RG000431.

    Article  Google Scholar 

  • Mesquita, M. D. S., Hodges, K. I., Atkinson, D. A., & Bader, J. (2011). Sea-ice anomalies in the Sea of Okhotsk and the relationship with storm tracks in the northern hemisphere during winter. Tellus A, 63, 312–323.

    Article  Google Scholar 

  • Mori, M., Watanabe, M., Shiogama, H., Inoue, J., & Kimoto, M. (2014). Robust Arctic Sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7, 869–873. https://doi.org/10.1038/NGEO2277.

    Article  Google Scholar 

  • Ogawa, F., Keenlyside, N., Gao, Y., Koenigk, T., Yang, S., Suo, L., et al. (2018). Evaluating impacts of recent Arctic Sea ice loss on the northern hemisphere winter climate change. Geophysical Research Letters, 45. https://doi.org/10.1002/2017GL076502.

    Article  Google Scholar 

  • Orsolini, Y. J., Senan, R., Benestad, R. E., & Melsom, A. (2012). Autumn atmospheric response to the 2007 low Arctic Sea ice extent in coupled ocean–atmosphere hindcasts. Climate Dynamics, 38, 2437–2448.

    Article  Google Scholar 

  • Overland, J. E., & Wang, M. (2010). Large-scale atmospheric circulation changes are associated with the recent loss of Arctic Sea ice. Tellus, 62. https://doi.org/10.1111/j.1600-0870.2009.00421.x.

    Article  Google Scholar 

  • Overland, J., Francis, J., Hall, R., Hanna, E., Kim, S. J., & Vihma, T. (2015). The melting Arctic and Midlatitude weather patterns: Are they connected? Journal of Climate, 28, 7917–7932. https://doi.org/10.1175/JCLI-D-14-00822.1.

    Article  Google Scholar 

  • Overland, J. E., Dethloff, K., Francis, J. A., Hall, R. J., Hanna, E., Kim, S. J., Screen, J. A., Shepherd, T. G., & Vihma, T. (2016). The melting Arctic and Midlatitude weather patterns: Forced Chaos and a way forward. Nature Climate Change. https://doi.org/10.1038/NCLIMATE3121.

    Article  Google Scholar 

  • Paquin, J. P., Döscher, R., Sushama, L., & Koenigk, T. (2013). Causes and consequences of mid-21st century rapid ice loss events simulated by the Rossby Centre regional Atmosphere-Ocean model. Tellus A, 2013(65), 19110. https://doi.org/10.3402/tellusa.v65i0.19110.

    Article  Google Scholar 

  • Peings, Y., & Magnusdottir. (2014). Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: a numerical study with CAM5. Journal of Climate. https://doi.org/10.1175/JCLI-D-13-00272.1.

    Article  Google Scholar 

  • Peterson, B., Holmes, R., McClelland, J., Vorosmarty, C., Lammers, R., Shiklmanov, A., Shiklomanov, I., & Rahmstorf, S. (2002). Increasing river discharge to the Arctic Ocean. Science, 298, 2171–2173.

    Article  Google Scholar 

  • Petoukhov, V., & Semenov, V. A. (2010). A link between reduced Barents-Kara Sea ice and cold winter extremes over northern continents. Journal of Geophysical Research, 115(D21111). https://doi.org/10.1029/2009JD013568.

  • Petoukhov, V., Rahmstorf, S., Petri, S., & Schellnhuber, H. J. (2013). Quasiresonant amplification of planetary waves and recent northern hemisphere weather extremes. Proceedings of the National Academy of Sciences, 110, 5336–5341.

    Article  Google Scholar 

  • Pithan, F., & Mauritsen, T. (2014). Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7. https://doi.org/10.1038/NGEO2071.

    Article  Google Scholar 

  • Polyakov, I. V., Beszczynska, A., Carmack, E. C., Dmitrenko, I. A., Fahrbach, E., Frolov, E. A., et al. (2005). One more step toward a warmer Arctic. Geophysical Research Letters, 32, L17605. https://doi.org/10.1029/2005GL023740.

    Article  Google Scholar 

  • Richter-Menge, J., & Jeffries, M. (2011). The Arctic, in “State of the climate in 2010”. Bulletin of the American Meteorological Society, 92(6), S143–S160.

    Google Scholar 

  • Rinke, A., & Dethloff, K. (2008). Simulated circum-Arctic climate changes by the end of the 21st century. Global and Planetary Change, 62(2008), 173–186.

    Article  Google Scholar 

  • Rinke, A., Dethloff, K., Dorn, W., Handorf, D., & Moore, J. C. (2013). Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies. Journal of Geophysical Research: Atmospheres, 118, 7698–7714. https://doi.org/10.1002/jgrd.50584.

    Article  Google Scholar 

  • Schlichtholz, P. (2016). Empirical relationships between summertime oceanic heat anomalies in the Nordic seas and large-scale atmospheric circulation in the following winter. Climate Dynamics, 47, 1735. https://doi.org/10.1007/s00382-015-2930-5.

    Article  Google Scholar 

  • Schweiger, A., Lindsay, R., Zhang, J., Steele, M., & Stern, H. (2011). Uncertainty in modeled arctic sea ice volume. Journal of Geophysical Research. https://doi.org/10.1029/2011JC007084.

  • Screen, J. A. (2014). Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nature Climate Change, 4, 577–582.

    Article  Google Scholar 

  • Screen, J. A. (2017). Climate science: Far-flung effects of Arctic warming. Nature Geoscience, 10, 253–254.

    Article  Google Scholar 

  • Screen, J. A., & Francis, J. A. (2016). Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nature Climate Change. https://doi.org/10.1038/NCLIMATE3011.

    Article  Google Scholar 

  • Screen, J. A., & Simmonds, I. (2010a). Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophysical Research Letters, 37(L16707). https://doi.org/10.1029/2010GL044136.

    Article  Google Scholar 

  • Screen, J. A., & Simmonds, I. (2010b). The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464. https://doi.org/10.1038/nature09051.

    Article  Google Scholar 

  • Screen, J. A., Deser, C., Simmonds, I., & Tomas, R. (2014). Atmospheric impacts of Arctic Sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dynamics. https://doi.org/10.1007/s00382-013-1830-9.

    Article  Google Scholar 

  • Screen, J. A., Deser, C., & Sun, L. (2015). Reduced risk of North American cold extremes due to continued Arctic Sea ice loss. Bulletin of the American Meteorological Society, 1489–1503. https://doi.org/10.1175/BAMS-D-14-00185.1.

    Article  Google Scholar 

  • Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., & Holland, M. M. (2009). The emergence of surface-based Arctic amplification. The Cryosphere, 3, 11–19.

    Article  Google Scholar 

  • Serreze, M. C., Barrett, A. P., & Cassano, J. J. (2011). Circulation and surface controls on the lower tropospheric temperature field of the Arctic. Journal of Geophysical Research, 116, D07104.

    Article  Google Scholar 

  • Shepherd, T. G. (2016). Effects of a warming Arctic. Science, 353, 989–990.

    Article  Google Scholar 

  • Skagseth, Ø., Furevik, T., Ingvaldsen, R., Loeng, H., Mork, K. A., Orvik, K. A., & Ozhigin, V. (2008). Chapter 2: Volume and heat transports to the Arctic Ocean via the Norwegian and Barents seas. In B. Dickson, J. Meincke, & P. Rhines (Eds.), Arctic-Subarctic Ocean fluxes: Defining the role of Nordic seas in climate. Berlin: Springer.

    Google Scholar 

  • Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li, C., et al. (2013). The role of the Barents Sea in the Arctic climate system. Reviews of Geophysics, 51, 415–449. https://doi.org/10.1002/rog.20017.

    Article  Google Scholar 

  • Sorteberg, A., Furevik, T., Drange, H., & Kvamstø, N. G. (2005). Effects of simulated natural variability on Arctic temperature projections. Geophysical Research Letters, 32(L18708). https://doi.org/10.1029/2005GL023404.

    Article  Google Scholar 

  • Spielhagen, R. F., Werner, K., Aagaard Sörensen, S., Zamelczyk, K., Kandiano, E., Budeus, G., Marchitto, T. M., & Hald, M. (2011). Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science, 331, 450–454. https://doi.org/10.1126/science.1197397.

    Article  Google Scholar 

  • Stocker, T., et al. (2013). Climate change 2013: The physical science basis. In Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK/New York: Cambridge University Press.

    Google Scholar 

  • Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., & Meier, W. M. (2012). Trends in Arctic Sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39(16). https://doi.org/10.1029/2012GL052676.

    Article  Google Scholar 

  • Sun, L., Perlwitz, J., & Hoerling, M. (2016). What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophysical Research Letters, 43, 5345–5352. https://doi.org/10.1002/2016GL069024.

    Article  Google Scholar 

  • Uotila, P., Karpechko, A., & Vihma, T. (2014). Links between Arctic sea ice and extreme summer precipitation in China: An alternative view. Advances in Polar Science, 25, 222–233. https://doi.org/10.13679/j.advps.2014.4.00222.

    Article  Google Scholar 

  • Vavrus, S. J., Wang, F., Martin, J. E., Francis, J. A., Peings, Y., & Cattiaux, J. (2017). Changes in north American atmospheric circulation and extreme weather: Influence of Arctic amplification and northern hemisphere snow cover. Journal of Climate, 30, 4317–4333.

    Article  Google Scholar 

  • Vihma, T. (2014). Effects of Arctic Sea ice decline on weather and climate: A review. Surveys in Geophysics, 35, 1175–1214. https://doi.org/10.1007/s10712-014-9284-0.

    Article  Google Scholar 

  • Vihma, T. (2017). Weather extremes linked to interaction of the Arctic and mid-latitudes. In S.-Y. Wang et al. (Eds.), Climate extremes: Mechanisms and potential prediction (Geophysical monograph series, 226) (pp. 39–49). American Geophysical Union.

    Google Scholar 

  • Walsh, J. E. (2014). Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global and Planetary Change, 117, 52–63. https://doi.org/10.1016/j.gloplacha.2014.03.003.

    Article  Google Scholar 

  • Wang, M., & Overland, J. (2012). A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophysical Research Letters, 39, L18501. https://doi.org/10.1029/2012GL052868.

    Article  Google Scholar 

  • Wu, B., Zhang, R., Wang, B., & D’Arrigo, R. (2009). On the association between spring Arctic Sea ice concentration and Chinese summer rainfall. Geophysical Research Letters, 36, L09501.

    Google Scholar 

  • Wu, B., Zhang, R., D’Arrigo, R., & Su, J. (2013). On the relationship between winter sea ice and summer atmospheric circulation over Eurasia. Journal of Climate, 26, 5523–5536.

    Article  Google Scholar 

  • Yang, S., & Christensen, J. H. (2012). Arctic Sea ice reduction and European cold winters in CMIP5 climate change experiments. Geophysical Research Letters, 39(L20707). https://doi.org/10.1029/2012GL053333.

  • Yeager, S. G., & Robson, J. I. (2017). Recent progress in understanding and predicting Atlantic decadal climate variability. Current Climate Change Reports, 3, 112–127.

    Article  Google Scholar 

  • Zhao, P., Zhang, X., Zhou, X., Ikeda, M., & Yin, Y. (2004). The sea ice extent anomaly in the North Pacific and its impact on the east Asian summer monsoon rainfall. Journal of Climate, 17, 3434–3447.

    Article  Google Scholar 

Download references

Acknowledgements

Torben Koenigk has been supported by the NordForsk-funded Nordic Centre of Excellence project (award 76654) Arctic Climate Predictions: Pathways to Resilient, Sustainable Societies (ARCPATH) together with the JPI-CLimate-Belmont Forum project 407, InterDec. The research on cloud-ice interactions and snow- and ice-albedo feedbacks described herein was supported by the US National Oceanic and Atmospheric Administration (NOAA) Climate Data Records program. Thanks are due to Aaron Letterly, Yinghui Liu, Xuanji Wang, and Richard Dworak for their contributions to those projects. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or US Government position, policy, or decision.

Timo Vihma has been supported by the Academy of Finland (contract 317999).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torben Koenigk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koenigk, T., Key, J., Vihma, T. (2020). Climate Change in the Arctic. In: Kokhanovsky, A., Tomasi, C. (eds) Physics and Chemistry of the Arctic Atmosphere. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-33566-3_11

Download citation

Publish with us

Policies and ethics