Skip to main content

Numerical Simulations of Overturned Traveling Waves

  • Chapter
  • First Online:
Nonlinear Water Waves

Abstract

Dimension-breaking continuation as a numerical technique for computing large amplitude, overturned traveling waves is presented. Dimension-breaking bifurcations from branches of planar waves are presented in two weakly-nonlinear model equations as well as in the vortex sheet formulation of the water wave problem, with the small scale approximation (Ambrose et al., J Comput Phys 247:168–191, 2013; Akers and Reeger, Wave Motion 68:210–217, 2017). The challenges and potential of this method toward computing overturned traveling waves at the interface between three-dimensional fluids is reviewed. Numerical simulations of dimension-breaking continuation are presented in each model. Overturned traveling three-dimensional waves are presented in the vortex sheet system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.D.D. Craik, The origins of water wave theory. Annu. Rev. Fluid Mech. 36, 1–28 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. G.D. Crapper, An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluid Mech. 2, 532–540 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Kinnersley, Exact large amplitude capillary waves on sheets of fluid. J. Fluid Mech. 77(2), 229–241 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. B.F. Akers, D.M. Ambrose, D.W. Sulon, Periodic traveling interfacial hydroelastic waves with or without mass. Zeitschrift für angewandte Mathematik und Physik 68(6), 141 (2017)

    Google Scholar 

  5. B.F. Akers, D.M. Ambrose, D.W. Sulon, Periodic travelling interfacial hydroelastic waves with or without mass II: multiple bifurcations and ripples. Eur. J. Appl. Math. 30, 1–35 (2018)

    MathSciNet  Google Scholar 

  6. B.F. Akers, D.M. Ambrose, K. Pond, J.D. Wright, Overturned internal capillary-gravity waves. Eur. J. Mech. B. Fluids 57, 143–151 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. D.M. Ambrose, M. Siegel, S. Tlupova, A small-scale decomposition for 3D boundary integral computations with surface tension. J. Comput. Phys. 247, 168–191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. S.T. Grilli, P. Guyenne, F. Dias, A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom. Int. J. Numer. Methods Fluids 35(7), 829–867 (2001)

    Article  MATH  Google Scholar 

  9. P. Lubin, S. Vincent, S. Abadie, J.-P. Caltagirone, Three-dimensional large eddy simulation of air entrainment under plunging breaking waves. Coast. Eng. 53(8), 631–655 (2006)

    Article  Google Scholar 

  10. M. Xue, H. Xü, Y. Liu, D.K.P. Yue, Computations of fully nonlinear three-dimensional wave–wave and wave–body interactions. Part 1. dynamics of steep three-dimensional waves. J. Fluid Mech. 438, 11–39 (2001)

    Google Scholar 

  11. C. Fochesato, F. Dias, A fast method for nonlinear three-dimensional free-surface waves, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 462 (The Royal Society, London, 2006), pp. 2715–2735

    MATH  Google Scholar 

  12. T.Y. Hou, P. Zhang, Convergence of a boundary integral method for 3-D water waves. Discrete Contin. Dynam. Systems Series B 2(1), 1–34 (2002)

    MathSciNet  MATH  Google Scholar 

  13. S.T. Grilli, F. Dias, P. Guyenne, C. Fochesato, F. Enet, Progress in fully nonlinear potential flow modeling of 3D extreme ocean waves, in Advances in Numerical Simulation of Nonlinear Water Waves (World Scientific, Singapore, 2010), pp. 75–128

    Book  MATH  Google Scholar 

  14. D.I. Meiron, P.G. Saffman, H.C. Yuen, Calculation of steady three-dimensional deep-water waves. J. Fluid Mech. 124, 109–121 (1982)

    Article  MATH  Google Scholar 

  15. C.H. Rycroft, J. Wilkening, Computation of three-dimensional standing water waves. J. Comput. Phys. 255, 612–638 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. D.P. Nicholls, F. Reitich, Stable, high-order computation of traveling water waves in three dimensions. Eur. J. Mech. B. Fluids 25(4), 406–424, 2006

    Article  MathSciNet  MATH  Google Scholar 

  17. E.I. Parau, J.-M. Vanden-Broeck, M.J. Cooker, Nonlinear three-dimensional gravity–capillary solitary waves. J. Fluid Mech. 536, 99–105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. J-M Vanden-Broeck, T. Miloh, B. Spivack, Axisymmetric capillary waves. Wave Motion 27(3), 245–256 (1998)

    Google Scholar 

  19. S. Grandison, J.-M. Vanden-Broeck, D.T. Papageorgiou, T. Miloh, B. Spivak, Axisymmetric waves in electrohydrodynamic flows. J. Eng. Math. 62(2), 133–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. B.F. Akers, J.A. Reeger, Three-dimensional overturned traveling water waves. Wave Motion 68, 210–217 (2017)

    Article  MathSciNet  Google Scholar 

  21. A.I. Dyachenko, E.A. Kuznetsov, M.D. Spector, V.E. Zakharov, Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221(1–2), 73–79 (1996)

    Article  Google Scholar 

  22. S.A. Dyachenko, On the dynamics of a free surface of an ideal fluid in a bounded domain in the presence of surface tension. J. Fluid Mech. 860, 408–418 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Gao, P. Milewski, J.-M. Vanden-Broeck, Hydroelastic solitary waves with constant vorticity. Wave Motion 85, 84–97 (2018)

    Article  MathSciNet  Google Scholar 

  24. F. Dias, T.J. Bridges, The numerical computation of freely propagating time-dependent irrotational water waves. Fluid Dyn. Res. 38(12), 803–830 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. M.J. Ablowitz, A.S. Fokas, Z.H. Musslimani, On a new non-local formulation of water waves. J. Fluid Mech. 562, 313–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. A.C.L. Ashton, A.S. Fokas, A non-local formulation of rotational water waves. J. Fluid Mech. 689, 129–148 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. D.M. Ambrose, N. Masmoudi, et al., Well-posedness of 3D vortex sheets with surface tension. Commun. Math. Sci. 5(2), 391–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Akers, D.M. Ambrose, J.D. Wright, Traveling waves from the arclength parameterization: Vortex sheets with surface tension. Interfaces Free. Bound. 15, 359–380 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. B.F. Akers, D.M. Ambrose, J.D. Wright, Gravity perturbed crapper waves. Proc. R. Soc. London, Ser. A 470(2161), 20130526 (2014)

    Google Scholar 

  30. J. Beale, A convergent boundary integral method for three-dimensional water waves. Math. Comput. 70(235), 977–1029 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Deconinck, K. Oliveras, The instability of periodic surface gravity waves. J. Fluid Mech. 675, 141–167 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Oliveras, B. Deconinck, The instabilities of periodic traveling water waves with respect to transverse perturbations. Nonlinear Wave Equ. 635, 131 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. B. Deconinck, O. Trichtchenko, Stability of periodic gravity waves in the presence of surface tension. Eur. J. Mech. B. Fluids 46, 97–108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Oliveras, Personal communication

    Google Scholar 

  35. J.Y. Holyer, Large amplitude progressive interfacial waves. J. Fluid Mech. 93(3), 433–448 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. REL Turner, J.-M. Vanden-Broeck, The limiting configuration of interfacial gravity waves. Phys. Fluids 29(2), 372–375 (1986)

    Google Scholar 

  37. S. Koshizuka, A. Nobe, Y. Oka, Numerical analysis of breaking waves using the moving particle semi-implicit method. Int. J. Numer. Methods Fluids 26(7), 751–769 (1998)

    Article  MATH  Google Scholar 

  38. O.B. Fringer, R.L. Street, The dynamics of breaking progressive interfacial waves. J. Fluid Mech. 494, 319–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Chen, C. Kharif, S. Zaleski, J. Li, Two-dimensional navier–stokes simulation of breaking waves. Phys. Fluids 11(1), 121–133 (1999)

    Article  MATH  Google Scholar 

  40. S.T. Grilli, P. Guyenne, F. Dias, A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom. Int. J. Numer. Methods Fluids 35(7), 829–867 (2001)

    Article  MATH  Google Scholar 

  41. P. Guyenne, S.T. Grilli, Numerical study of three-dimensional overturning waves in shallow water. J. Fluid Mech. 547, 361–388 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Z. Wang, Stability and dynamics of two-dimensional fully nonlinear gravity–capillary solitary waves in deep water. J. Fluid Mech. 809, 530–552 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. D.I. Meiron, P.G. Saffman, Overhanging interfacial gravity waves of large amplitude. J. Fluid Mech. 129, 213–218 (1983)

    Article  MATH  Google Scholar 

  44. T. Gao, J.-M. Vanden-Broeck, Z. Wang, Numerical computations of two-dimensional flexural-gravity solitary waves on water of arbitrary depth. IMA J. Appl. Math. 83(3), 436–450 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Gao, J.-M. Vanden-Broeck, Numerical studies of two-dimensional hydroelastic periodic and generalised solitary waves. Phys. Fluids 26(8), 087101 (2014)

    Google Scholar 

  46. P.A. Milewski, J.-M. Vanden-Broeck, Z. Wang, Hydroelastic solitary waves in deep water. J. Fluid Mech. 679, 628–640 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. P. Guyenne, E. Parau, Forced and unforced flexural-gravity solitary waves. Procedia IUTAM 11, 44–57 (2014)

    Article  Google Scholar 

  48. T. Gao, Z. Wang, J.-M. Vanden-Broeck, New hydroelastic solitary waves in deep water and their dynamics. J. Fluid Mech. 788, 469–491 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. B. Akers, P.A. Milewski, A model equation for wavepacket solitary waves arising from capillary-gravity flows. Stud. Appl. Math. 122(3), 249–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. E. Aulisa, M. Toda, Z.S. Kose, Constructing isothermal curvature line coordinates on surfaces which admit them. Cent. Eur. J. Math. 11(11), 1982–1993 (2013)

    MathSciNet  MATH  Google Scholar 

  51. J.T. Beale, T.Y. Hou, J. Lowengrub, Convergence of a boundary integral method for water waves. SIAM J. Numer. Anal. 33(5), 1797–1843 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  52. L.N. Trefethen, J.A.C. Weideman, The exponentially convergent trapezoidal rule. SIAM Rev. 56(3), 385–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. D.M. Ambrose, J. Wilkening, Computation of symmetric, time-periodic solutions of the vortex sheet with surface tension. Proc. Natl. Acad. Sci. 107(8), 3361–3366 (2010)

    Article  Google Scholar 

  54. B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539–541 (1970)

    MATH  Google Scholar 

  55. B. Akers, P.A. Milewski, A model equation for wavepacket solitary waves arising from capillary-gravity flows. Stud. Appl. Math. 122(3), 249–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. M.D. Groves, M. Haragus, S.M. Sun, A dimension–breaking phenomenon in the theory of steady gravity–capillary water waves. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 360(1799), 2189–2243 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. P.A. Milewski, Z. Wang, Transversally periodic solitary gravity–capillary waves. Proc. R. Soc. A Math. Phys. Eng. Sci. 470, 20130537 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Benjamin Akers and Matthew Seiders were supported in part by the Air Force Office of Scientific Research (AFOSR) and the Office of Naval Research (ONR) during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin F. Akers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akers, B.F., Seiders, M. (2019). Numerical Simulations of Overturned Traveling Waves. In: Henry, D., Kalimeris, K., Părău, E., Vanden-Broeck, JM., Wahlén, E. (eds) Nonlinear Water Waves . Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-33536-6_7

Download citation

Publish with us

Policies and ethics