Skip to main content

HOS Simulations of Nonlinear Water Waves in Complex Media

  • Chapter
  • First Online:
Nonlinear Water Waves

Abstract

We present an overview of recent extensions of the high-order spectral method of Craig and Sulem (J Comput Phys 108:73–83, 1993) to simulating nonlinear water waves in a complex environment. Under consideration are cases of wave propagation in the presence of fragmented sea ice, variable bathymetry and a vertically sheared current. Key components of this method, which apply to all three cases, include reduction of the full problem to a lower-dimensional system involving boundary variables alone, and a Taylor series representation of the Dirichlet–Neumann operator. This results in a very efficient and accurate numerical solver by using the fast Fourier transform. Two-dimensional simulations of unsteady wave phenomena are shown to illustrate the performance and versatility of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. af Klinteberg, A.K. Tornberg, A fast integral equation method for solid particles in viscous flow using quadrature by expansion. J. Comput. Phys. 326, 420–445 (2016)

    Article  MathSciNet  Google Scholar 

  2. M. Cathala, Asymptotic shallow water models with non smooth topographies. Monatsh. Math. 179, 325–353 (2016)

    Article  MathSciNet  Google Scholar 

  3. R. Coifman, Y. Meyer, Nonlinear harmonic analysis and analytic dependence. Proc. Symp. Pure Math. 43, 71–78 (1985)

    Article  MathSciNet  Google Scholar 

  4. A. Compelli, Hamiltonian formulation of 2 bounded immiscible media with constant non-zero vorticities and a common interface. Wave Motion 54, 115–124 (2015)

    Article  MathSciNet  Google Scholar 

  5. W. Craig, D.P. Nicholls, Traveling gravity water waves in two and three dimensions. Eur. J. Mech. B/Fluids 21, 615–641 (2002)

    Article  MathSciNet  Google Scholar 

  6. W. Craig, C. Sulem, Numerical simulation of gravity waves. J. Comput. Phys. 108, 73–83 (1993)

    Article  MathSciNet  Google Scholar 

  7. W. Craig, P. Guyenne, H. Kalisch, Hamiltonian long wave expansions for free surfaces and interfaces. Commun. Pure Appl. Math. 58, 1587–1641 (2005)

    Article  MathSciNet  Google Scholar 

  8. W. Craig, P. Guyenne, D.P. Nicholls, C. Sulem, Hamiltonian long-wave expansions for water waves over a rough bottom. Proc. R. Soc. A 461, 839–873 (2005)

    Article  MathSciNet  Google Scholar 

  9. W. Craig, P. Guyenne, J. Hammack, D. Henderson, C. Sulem, Solitary water wave interactions. Phys. Fluids 18, 057106 (2006)

    Article  MathSciNet  Google Scholar 

  10. W. Craig, P. Guyenne, C. Sulem, Water waves over a random bottom. J. Fluid Mech. 640, 79–107 (2009)

    Article  MathSciNet  Google Scholar 

  11. W. Craig, P. Guyenne, C. Sulem, Internal waves coupled to surface gravity waves in three dimensions. Commun. Math. Sci. 13, 893–910 (2015)

    Article  MathSciNet  Google Scholar 

  12. M.W. Dingemans, Comparison of computations with Boussinesq-like models and laboratory measurements, in Technical Report H1684.12 (Delft Hydraulics, Delft, 1994)

    Google Scholar 

  13. D.G. Dommermuth, D.K.P. Yue, A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 267–288 (1987)

    Article  Google Scholar 

  14. G. Ducrozet, F. Bonnefoy, D. Le Touzé, P. Ferrant, HOS-ocean: open-source solver for nonlinear waves in open ocean based on high-order spectral method. Comput. Phys. Commun. 203, 245–254 (2016)

    Article  Google Scholar 

  15. M. Francius, C. Kharif, S. Viroulet,Nonlinear simulations of surface waves in finite depth on a linear shear current, in Proceedings of the 7th International Conference on Coastal Dynamics (2013), pp. 649–660.

    Google Scholar 

  16. L. Greengard, V. Rokhlin, A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MathSciNet  Google Scholar 

  17. S.T. Grilli, P. Guyenne, F. Dias, A fully nonlinear model for three-dimensional overturning waves over an arbitrary bottom. Int. J. Numer. Meth. Fluids 35, 829–867 (2001)

    Article  Google Scholar 

  18. P. Guyenne, A high-order spectral method for nonlinear water waves in the presence of a linear shear current. Comput. Fluids 154, 224–235 (2017)

    Article  MathSciNet  Google Scholar 

  19. P. Guyenne, S.T. Grilli, Numerical study of three-dimensional overturning waves in shallow water. J. Fluid Mech. 547, 361–388 (2006)

    Article  MathSciNet  Google Scholar 

  20. P. Guyenne, D.P. Nicholls, Numerical simulation of solitary waves on plane slopes. Math. Comput. Simul. 69, 269–281 (2005)

    Article  MathSciNet  Google Scholar 

  21. P. Guyenne, D.P. Nicholls, A high-order spectral method for nonlinear water waves over moving bottom topography. SIAM J. Sci. Comput. 30, 81–101 (2007)

    Article  MathSciNet  Google Scholar 

  22. P. Guyenne, E.I. Părău, Computations of fully nonlinear hydroelastic solitary waves on deep water. J. Fluid Mech. 713, 307–329 (2012)

    Article  MathSciNet  Google Scholar 

  23. P. Guyenne, E.I. Părău, Finite-depth effects on solitary waves in a floating ice sheet. J. Fluids Struct. 49, 242–262 (2014)

    Article  Google Scholar 

  24. P. Guyenne, E.I. Părău, Numerical study of solitary wave attenuation in a fragmented ice sheet. Phys. Rev. Fluids 2, 034002 (2017)

    Article  Google Scholar 

  25. P. Guyenne, D. Lannes, J.-C. Saut, Well-posedness of the Cauchy problem for models of large amplitude internal waves. Nonlinearity 23, 237–275 (2010)

    Article  MathSciNet  Google Scholar 

  26. N. Hale, A. Townsend, A fast, simple, and stable Chebyshev–Legendre transform using an asymptotic formula. SIAM J. Sci. Comput. 36, A148–A167 (2014)

    Article  MathSciNet  Google Scholar 

  27. T.Y. Hou, J.S. Lowengrub, M.J. Shelley, Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114, 312–338 (1994)

    Article  MathSciNet  Google Scholar 

  28. Y. Liu, D.K.P. Yue, On generalized Bragg scattering of surface waves by bottom ripples. J. Fluid Mech. 356, 297–326 (1998)

    Article  MathSciNet  Google Scholar 

  29. P.A. Milewski, Z. Wang, Three dimensional flexural-gravity waves. Stud. Appl. Math. 131, 135–148 (2013)

    Article  MathSciNet  Google Scholar 

  30. D.P. Nicholls, Traveling water waves: spectral continuation methods with parallel implementation. J. Comput. Phys. 143, 224–240 (1998)

    Article  MathSciNet  Google Scholar 

  31. D.P. Nicholls, Boundary perturbation methods for water waves. GAMM-Mitt. 30, 44–74 (2007)

    Article  MathSciNet  Google Scholar 

  32. D.P. Nicholls, F. Reitich, Stability of high-order perturbative methods for the computation of Dirichlet–Neumann operators. J. Comput. Phys. 170, 276–298 (2001)

    Article  MathSciNet  Google Scholar 

  33. D.P. Nicholls, F. Reitich, A new approach to analyticity of Dirichlet–Neumann operators. Proc. Roy. Soc. Edinburgh Sect. A 131, 1411–1433 (2001)

    Article  MathSciNet  Google Scholar 

  34. D.P. Nicholls, M. Taber, Joint analyticity and analytic continuation of Dirichlet–Neumann operators on doubly perturbed domains. J. Math. Fluid Mech. 10, 238–271 (2008)

    Article  MathSciNet  Google Scholar 

  35. P.I. Plotnikov, J.F. Toland, Modelling nonlinear hydroelastic waves. Phil. Trans. R. Soc. Lond. A 369, 2942–2956 (2011)

    Article  MathSciNet  Google Scholar 

  36. P. Wadhams, V.A. Squire, D.J. Goodman, A.M. Cowan, S.C. Moore, The attenuation rates of ocean waves in the marginal ice zone. J. Geophys. Res. 93, 6799–6818 (1988)

    Article  Google Scholar 

  37. E. Wahlén, A Hamiltonian formulation of water waves with constant vorticity. Lett. Math. Phys. 79, 303–315 (2007)

    Article  MathSciNet  Google Scholar 

  38. B.J. West, K.A. Brueckner, R.S. Janda, D.M. Milder, R.L. Milton, A new numerical method for surface hydrodynamics. J. Geophys. Res. 92, 11803–11824 (1987)

    Article  Google Scholar 

  39. L. Xu, P. Guyenne, Numerical simulation of three-dimensional nonlinear water waves. J. Comput. Phys. 228, 8446–8466 (2009)

    Article  MathSciNet  Google Scholar 

  40. V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges support by the NSF through grant number DMS-1615480. He is grateful to the Erwin Schrödinger International Institute for Mathematics and Physics for its hospitality during a visit in the fall 2017, and to the organizers of the workshop “Nonlinear Water Waves—an Interdisciplinary Interface”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Guyenne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guyenne, P. (2019). HOS Simulations of Nonlinear Water Waves in Complex Media. In: Henry, D., Kalimeris, K., Părău, E., Vanden-Broeck, JM., Wahlén, E. (eds) Nonlinear Water Waves . Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-33536-6_4

Download citation

Publish with us

Policies and ethics