Skip to main content

Global Diffeomorphism of the Lagrangian Flow-map for a Pollard-like Internal Water Wave

  • Chapter
  • First Online:
  • 544 Accesses

Abstract

In this article we provide an overview of a rigorous justification of the global validity of the fluid motion described by a new exact and explicit solution prescribed in terms of Lagrangian variables of the nonlinear geophysical equations. More precisely, the three-dimensional Lagrangian flow-map describing this exact and explicit solution is proven to be a global diffeomorphism from the labelling domain into the fluid domain. Then, the flow motion is shown to be dynamically possible.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Bennett, Lagrangian Fluid Dynamics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  2. J.P. Boyd, Dynamics of the Equatorial Ocean (Springer, Berlin, 2018)

    Book  Google Scholar 

  3. A. Constantin, On the deep water wave motion. J. Phys. A: Math. Gen. 34, 1405–1417 (2001)

    Article  MathSciNet  Google Scholar 

  4. A. Constantin, Edge waves along a sloping bed. J. Phys. A: Math. Gen 34, 9723–9731 (2001)

    Article  Google Scholar 

  5. A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, vol. 81 (SIAM, Philadelphia, 2011)

    Book  Google Scholar 

  6. A. Constantin, An exact solution for Equatorially trapped waves. J. Geophys. Res. 117, 1–8 (2012)

    Article  Google Scholar 

  7. A. Constantin, Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)

    Article  Google Scholar 

  8. A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)

    Article  Google Scholar 

  9. A. Constantin, S.G. Monismith, Gerstner waves in the presence of mean currents and rotation. J. Fluid. Mech. 820, 511–528 (2017). https://doi.org/10.1017/jfm.2017.223

    Article  MathSciNet  Google Scholar 

  10. B. Cushman-Roisin, J.M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, vol. 101 (Academic Press, London, 2011)

    MATH  Google Scholar 

  11. F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)

    Article  Google Scholar 

  12. W. Froude, On the rolling of ships. Trans. Inst. Naval Arch. 2, 45–62 (1862)

    Google Scholar 

  13. D. Henry, On Gerstner’s water wave. J. Nonlinear Math. Phys. 15, 87–95 (2008)

    Article  MathSciNet  Google Scholar 

  14. D. Henry, An exact solution for Equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 190–195 (2013)

    Article  MathSciNet  Google Scholar 

  15. D. Henry, Equatorially trapped nonlinear water waves in a β-plane approximation with centripetal forces. J. Fluid Mech. 804 (2016). https://doi.org/10.1017/jfm.2016.544

  16. D. Henry, A modified equatorial β-plane approximation modelling nonlinear wave-current interactions. J. Differ. Equ. 263, 2554–2566 (2017)

    Article  MathSciNet  Google Scholar 

  17. D. Henry, On three-dimensional Gerstner-like equatorial water waves. Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci. 376, 1–16 (2017)

    Google Scholar 

  18. R.A. Horn, C.R. Johnson. Matrix Analysis (Cambridge University Press, Cambridge, 1985), p. 346

    Book  Google Scholar 

  19. H.-C Hsu, An exact solution for nonlinear internal Equatorial waves in the f-plane approximation. J. Math. Fluid Mech. 16, 463–471 (2014)

    Google Scholar 

  20. D. Ionescu-Kruse, An exact solution for geophysical edge waves in the f-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)

    Article  MathSciNet  Google Scholar 

  21. D. Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows. Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci. 376, 1–21 (2017)

    MathSciNet  Google Scholar 

  22. R.S. Johnson, Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography. Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci. 376, 1–19 (2017)

    Google Scholar 

  23. M. Kluczek, Exact and explicit internal Equatorially-trapped water waves with underlying currents. J. Math. Fluid Mech. 10, 305–314 (2016)

    MathSciNet  MATH  Google Scholar 

  24. M. Kluczek, Exact Pollard-like internal water waves. J. Nonlinear Math. Phys. 26, 133–146 (2019)

    Article  MathSciNet  Google Scholar 

  25. W. Kulpa, Poincare and domain invariance theorem. Acta Univ. Carolin. Math. Phys. 39, 127–136 (1998)

    MathSciNet  MATH  Google Scholar 

  26. S. Monismith, H. Nepf, E. Cowen, L. Thais, J. Magnaudet, Laboratory observations of mean flows under surface gravity waves. J. Fluid Mech. 573, 131–147 (2007)

    Article  Google Scholar 

  27. A.V. Matioc, Exact geophysical waves in stratified fluids. Appl. Anal. 92, 2254–2261 (2013)

    Article  MathSciNet  Google Scholar 

  28. R.T. Pollard, Surface waves with rotation: an exact solution. J. Geophys. Res 75, 5895–5898 (1970)

    Article  Google Scholar 

  29. W.J.M Rankine, On the exact form of waves near the surface of deep water. Philos. Trans. R. Soc. Lond. 153, 127–138 (1863)

    Google Scholar 

  30. F. Reech, Sur la théorie des ondes liquides périodiques. C.R. Acad. Sci. Paris 68, 1099–1101 (1869)

    Google Scholar 

  31. A. Rodríguez-Sanjurjo, Global diffeomorphism of the Lagrangian flow-map for Equatorially trapped internal water waves. Nonlinear Anal. 149, 156–164 (2017)

    Article  MathSciNet  Google Scholar 

  32. A. Rodríguez-Sanjurjo, Global diffeomorphism of the Lagrangian flow-map for Pollard-like solutions. Ann. Mat. Pura Appl. 197, 1787–1797 (2018)

    Article  MathSciNet  Google Scholar 

  33. E.H. Rothe, Introduction to Various Aspects of Degree Theory in Banach Spaces. Mathematical Surveys and Monographs, vol. 23 (American Mathematical Society, Providence, 1986)

    Google Scholar 

  34. S. Sastre-Gomez, Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves. Nonlinear Anal. 125, 725–731 (2015)

    Article  MathSciNet  Google Scholar 

  35. R. Stuhlmeier, Internal Gerstner waves: applications to dead water. Appl. Anal. 93, 1451–1457 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Erwin Schrödinger International Institute for Mathematics and Physics (ESI) during the program “Mathematical Aspects of Physical Oceanography” and the support of the Science Foundation Ireland (SFI) research grant 13/CDA/2117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Kluczek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kluczek, M., Rodríguez-Sanjurjo, A. (2019). Global Diffeomorphism of the Lagrangian Flow-map for a Pollard-like Internal Water Wave. In: Henry, D., Kalimeris, K., Părău, E., Vanden-Broeck, JM., Wahlén, E. (eds) Nonlinear Water Waves . Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-33536-6_2

Download citation

Publish with us

Policies and ethics