Skip to main content

Actin Cytoskeleton and Action Potentials: Forgotten Connections

  • Chapter
  • First Online:
The Cytoskeleton

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 24))

Abstract

Actin cytoskeleton was discovered some 70 years ago, and it is well known to be responsible for cellular transport phenomena and contractilities, with animal muscles representing the most obvious example. This ancient cytoskeletal system is present in all eukaryotic cells, responsible for all kinds of intracellular motilities. For example, the synaptic vesicle recycling also relies on the actin cytoskeleton, which supports all types of membranes structurally and functionally. Action potentials are fundamental for the long-distance signaling in both animals and plants. Although it is not generally appreciated, action potentials are mechanistically and functionally interlinked with the actin cytoskeleton associated with membranes. In both animals and plants, the inherent bioelectricity of membranes is closely linked with the actin cytoskeleton. Despite the fundamental importance of this phenomenon, it remains to be under-investigated, and future studies will be needed to illuminate the elusive electrochemical and bioelectric nature of cellular life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasheim G, Fink BR, Middaugh M (1974) Inhibition of rapid axoplasmic transport by procaine hydrochloride. Anesthesiology 41:549–553

    Article  CAS  PubMed  Google Scholar 

  • Amari K, Di Donato M, Dolja VV, Heinlein M (2014) Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus. PLoS Pathog 10:e1004448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrews NW, Almeida PE, Corrotte M (2014) Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol 24:734–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aponte-Santamaría C, Brunken J, Gräter F (2017) Stress propagation through biological lipid bilayers in silico. J Am Chem Soc 139:13588–13591

    Article  PubMed  CAS  Google Scholar 

  • Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 1791:869–875

    Article  CAS  PubMed  Google Scholar 

  • Baluška F (2010) Recent surprising similarities between plant cells and neurons. Plant Signal Behav 5:87–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Baluška F, Hlavačka A (2005) Plant formins come of age: something special about cross-walls. New Phytol 168:499–503

    Article  PubMed  Google Scholar 

  • Baluška F, Mancuso S (2013) Root apex transition zone as oscillatory zone. Front Plant Sci 4:354

    Article  PubMed  PubMed Central  Google Scholar 

  • Baluška F, Wan Y-L (2012) Physical control over endocytosis. In: Šamaj J (ed) Endocytosis in plants. Springer, Berlin, pp 123–149

    Chapter  Google Scholar 

  • Baluška F, Vitha S, Barlow PW, Volkmann D (1997) Rearrangements of F-actin arrays in growing cells of intact maize root apex tissues: a major developmental switch occurs in the postmitotic transition region. Eur J Cell Biol 72:113–121

    PubMed  Google Scholar 

  • Baluška F, Šamaj J, Napier R, Volkmann D (1999) Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J 19:481–488

    Article  PubMed  Google Scholar 

  • Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua NH, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Cvrčková F, Kendrick-Jones J, Volkmann D (2001a) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol 126:39–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Baluška F, Jásik J, Edelmann HG, Salajová T, Volkmann D (2001b) Latrunculin B-induced plant dwarfism: plant cell elongation is F-actin-dependent. Dev Biol 231:113–124

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Šamaj J, Hlavačka A, Kendrick-Jones J, Volkmann D (2004) Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55:463–473

    Article  PubMed  Google Scholar 

  • Baluška F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Barlow PW, Volkmann D, Mancuso S (2006) Gravity related paradoxes in plants: plant neurobiology provides the means for their resolution. In: Witzany G (ed) Biosemiotics in transdisciplinary context, Proceedings of the gathering in biosemiotics 6, Salzburg. Umweb, Helsinki

    Google Scholar 

  • Baluška F, Schlicht M, Volkmann D, Mancuso S (2008) Vesicular secretion of auxin: evidences and implications. Plant Signal Behav 3:254–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Baluška F, Schlicht M, Wan Y-L, Burbach C, Volkmann D (2009) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopold 96:103–122

    Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2010) Root apex transition zone: a signalling-response nexus in the root. Trends Plant Sci 15:402–408

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Yokawa K, Mancuso S, Baverstock K (2016) Understanding of anesthesia – why consciousness is essential for life and not based on genes. Commun Integr Biol 9:e1238118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baluška F, Strnad M, Mancuso S (2018) Substantial evidence for auxin secretory vesicles. Plant Physiol 176:2586–2587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bandeiras C, Serro AP, Luzyanin K, Fernandes A, Saramago B (2013) Anesthetics interacting with lipid rafts. Eur J Pharm Sci 48:153–165

    Article  CAS  PubMed  Google Scholar 

  • Barry PH (1970a) Volume flows and pressure changes during an action potential in cells of Chara australis. I. Experimental results. J Membr Biol 3:313–334

    Article  CAS  PubMed  Google Scholar 

  • Barry PH (1970b) Volume flows and pressure changes during an action potential in cells of Chara australis. II. Theoretical considerations. J Membr Biol 3:335–371

    Article  CAS  PubMed  Google Scholar 

  • Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8:451–465

    Article  CAS  PubMed  Google Scholar 

  • Beilby MJ (1984) Calcium and plant action potentials. Plant Cell Environ 7:415–421

    Article  CAS  Google Scholar 

  • Beilby M (2007) Action potential in charophytes. Int Rev Cytol 257:43–82

    Article  CAS  PubMed  Google Scholar 

  • Beilby M (2016) Multi-scale characean experimental system: from electrophysiology of membrane transporters to cell-to-cell connectivity, cytoplasmic streaming and auxin metabolism. Front Plant Sci 7:1052

    Article  PubMed  PubMed Central  Google Scholar 

  • Beilby MJ, Al Khazaaly S (2016) Re-modeling Chara action potential: I. From Thiel model of Ca2+ transient to action potential form. AIMS Biophys 3:431–449

    Article  CAS  Google Scholar 

  • Beilby MJ, Shepherd VA (1996) Turgor regulation in Lamprothamnium papulosum.1. I/V analysis and pharmacological dissection of the hypotonic effect. Plant Cell Environ 19:837–847

    Article  Google Scholar 

  • Bennett MVL, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511

    Article  CAS  PubMed  Google Scholar 

  • Berghöfer T, Eing C, Flickinger B, Hohenberger P, Wegner LH, Frey W, Nick P (2009) Nanosecond electric pulses trigger actin responses in plant cells. Biochem Biophys Res Commun 387:590–595

    Article  PubMed  CAS  Google Scholar 

  • Bernard C (1878) Leçonssur les phénomènes de la vie communs aux animauxet aux végétaux. Lectures on phenomena of life common to animals and plants. Ballliere, Paris

    Google Scholar 

  • Bezanilla F (2006) The action potential: from voltage-gated conductances to molecular structures. Biol Res 39:425–435

    Article  CAS  PubMed  Google Scholar 

  • Bezanilla F (2008) Ion channels: from conductance to structure. Neuron 60:456–468

    Article  CAS  PubMed  Google Scholar 

  • Białasek M, Górecka M, Mittler R, Karpiński S (2017) Evidence for the involvement of electrical, calcium and ROS signaling in the systemic regulation of non-photochemical quenching and photosynthesis. Plant Cell Physiol 58:207–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blinks LR, Harris ES, Osterhout WJV (1929) Studies on stimulation in Nitella. Proc Soc Exp Biol Med 26:836–838

    Article  Google Scholar 

  • Böhm J, Scherzer S, Krol E, Kreuzer I, von Meyer K, Lorey C, Mueller TD, Shabala L, Monte I, Solano R, Al-Rasheid KA, Rennenberg H, Shabala S, Neher E, Hedrich R (2016) The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake. Curr Biol 26:286–295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bose JC (1913) Researches on irritability of plants. Longmans, Green, London

    Book  Google Scholar 

  • Bose JC (1926) The nervous mechanisms of plants. Longmans, Green, London

    Book  Google Scholar 

  • Boye TL, Nylandsted J (2016) Annexins in plasma membrane repair. Biol Chem 397:961–969

    Article  CAS  PubMed  Google Scholar 

  • Boye TL, Maeda K, Pezeshkian W, Sønder SL, Haeger SC, Gerke V, Simonsen AC, Nylandsted J (2017) Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair. Nat Commun 8:1623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braun M, Baluška F, von Witsch M, Menzel D (1999) Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta 209:435–443

    Article  CAS  PubMed  Google Scholar 

  • Bresadola M (1998) Medicine and science in the life of Luigi Galvani (1737–1798). Brain Res Bull 46:367–380

    Article  CAS  PubMed  Google Scholar 

  • Brockmann MM, Rosenmund C (2016) Catching up with ultrafast endocytosis. Neuron 90:423–424

    Article  CAS  PubMed  Google Scholar 

  • Brunet T, Arendt D (2016) From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes. Philos Trans R Soc Lond Ser B Biol Sci 371:20150043

    Article  CAS  Google Scholar 

  • Bulychev AA, Komarova AV (2014) Long-distance signal transmission and regulation of photosynthesis in characean cells. Biochem Mosc 79:273–281

    Article  CAS  Google Scholar 

  • Bulychev AA, Kamzolkina NA, Luengviriya J, Rubin AB, Müller SC (2004) Effect of a single excitation stimulus on photosynthetic activity and light-dependent pH banding in Chara cells. J Membr Biol 202:11–19

    Article  CAS  PubMed  Google Scholar 

  • Byrum JN, Rodgers W (2015) Membrane-cytoskeleton interactions in cholesterol-dependent domain formation. Essays Biochem 57:177–187

    Article  PubMed  Google Scholar 

  • Cheung AY, Niroomand S, Zou Y, Wu HM (2010) A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc Natl Acad Sci USA 107:16390–16395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chichili GR, Rodgers W (2007) Clustering of membrane raft proteins by the actin cytoskeleton. J Biol Chem 282:36682–36691

    Article  CAS  PubMed  Google Scholar 

  • Chichili GR, Rodgers W (2009) Cytoskeleton-membrane interactions in membrane raft structure. Cell Mol Life Sci 66:2319–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi WG, Hilleary R, Swanson SJ, Kim SH, Gilroy S (2016) Rapid, long-distance electrical and calcium signaling in plants. Annu Rev Plant Biol 67:287–307

    Article  CAS  PubMed  Google Scholar 

  • Choi WG, Miller G, Wallace I, Harper J, Mittler R, Gilroy S (2017) Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant J 90:698–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark GB, Morgan RO, Fernandez MP, Roux SJ (2012) Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytol 196:695–712

    Article  CAS  PubMed  Google Scholar 

  • Clayton L, Lloyd CW (1985) Actin organization during the cell cycle in meristematic plant cells. Actin is present in the cytokinetic phragmoplast. Exp Cell Res 156:231–238

    Article  CAS  PubMed  Google Scholar 

  • Cohen LB (1973) Changes in neuron structure during action potential propagation and synaptic transmission. Physiol Rev 53:373–418

    Article  CAS  PubMed  Google Scholar 

  • Cole KS, Curtis HJ (1938) Electric impedance of Nitella during activity. J Gen Physiol 22:37–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole KS, Curtis HJ (1939) Electric impedance of the squid giant axon during activity. J Gen Physiol 22:649–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craxton M (2007) Evolutionary genomics of plant genes encoding N-terminal-TM-C2 domain proteins and the similar FAM62 genes and synaptotagmin genes of metazoans. BMC Genomics 8:259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cvrčková F (2013) Formins and membranes: anchoring cortical actin to the cell wall and beyond. Front Plant Sci 4:436

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies E (1987) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10:623–631

    Article  Google Scholar 

  • Davies JM (2014) Annexin-mediated calcium signalling in plants. Plan Theory 3:128–140

    Google Scholar 

  • Deeks MJ, Cvrčková F, Machesky LM, Mikitová V, Ketelaar T, Zársky V, Davies B, Hussey PJ (2005) Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol 168:529–540

    Article  CAS  PubMed  Google Scholar 

  • Delvendahl I, Vyleta NP, von Gersdorff H, Hallermann S (2016) Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses. Neuron 90:492–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrásek J, Seifertová D, Tejos R, Meisel LA, Zazímalová E, Gadella TW Jr, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci USA 105:4489–4494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diao M, Ren S, Wang Q, Qian L, Shen J, Liu Y, Huang S (2018) Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata. elife 7:e36316

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinic J, Ashrafzadeh P, Parmryd I (2013) Actin filaments attachment at the plasma membrane in live cells cause the formation of ordered lipid domains. Biochim Biophys Acta 1828:1102–1111

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Lv H, Xia G, Wang M (2012) Does diacylglycerol serve as a signaling molecule in plants? Plant Signal Behav 7:472–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Z, Tominaga M (2018) Actin-myosin XI: an intracellular control network in plants. Biochem Biophys Res Commun 506:403–408

    Article  CAS  PubMed  Google Scholar 

  • Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J (2019) Extracellular matrix sensing by FERONIA and leucine-rich repeat extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J 38:e100353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dziubińska H, Trębacz K, Zawadzki T (1989) The effect of excitation on the rate of respiration in the liverwort Conocephalum conicum. Physiol Plant 75:417–423

    Article  Google Scholar 

  • Ewart AJ (1902) On the physics and physiology of the protoplasmic streaming in plants. Proc R Soc Lond 69:466–470

    Article  Google Scholar 

  • Ewart AJ (1903) On the physics and physiology of protoplasmic streaming in plants. Clarendon Press, Oxford

    Google Scholar 

  • Felle HH, Zimmermann MR (2007) Systemic signalling in barley through action potentials. Planta 226:203–214

    Article  CAS  PubMed  Google Scholar 

  • Fichtl B, Shrivastava S, Schneider MF (2016) Protons at the speed of sound: predicting specific biological signaling from physics. Sci Rep 6:22874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fichtl B, Silman I, Schneider MF (2018) On the physical basis of biological signaling by interface pulses. Langmuir 34:4914–4919

    Article  CAS  PubMed  Google Scholar 

  • Fillafer C, Mussel M, Muchowski J, Schneider MF (2018) Cell surface deformation during an action potential. Biophys J 114:410–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findlay GP, Hope AB (1964) Ionic relations of cells of Chara australis: VII. The separate electrical characteristics of the plasmalemma and the tonoplast. Aust J Biol Sci 17:62–77

    Article  CAS  Google Scholar 

  • Finger S, Piccolino M, Stahnisch FW (2013) Alexander von Humboldt: Galvanism, animal electricity, and self-experimentation. I. Formative years, naturphilosophie, and Galvanism. J Hist Neurosci Basic Clin Perspect 22:225–260

    Article  Google Scholar 

  • Fink BR, Kish SJ (1976) Reversible inhibition of rapid axonal transport in vivo by lidocaine hydrochloride. Anesthesiology 44:139–146

    Article  CAS  PubMed  Google Scholar 

  • Fisahn J, Herde O, Willmitzer L, Peña-Cortés H (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. Plant Cell Physiol 45:456–459

    Article  CAS  PubMed  Google Scholar 

  • Foissner I, Wasteneys GO (2012) The characean internodal cell as a model system for studying wound healing. J Microsc 247:10–22

    Article  CAS  PubMed  Google Scholar 

  • Fromm J (1991) Control of phloem unloading by action potentials in Mimosa. Physiol Plant 83:529–533

    Article  Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469

    Article  Google Scholar 

  • Fromm J, Eschrich W (1993) Electric signals released from roots of willow (Salix viminalis L.) change transpiration and photosynthesis. J Plant Physiol 141:673–680

    Article  CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    Article  CAS  PubMed  Google Scholar 

  • Furt F, König S, Bessoule J-J, Sargueil F, Zallot R, Stanislas T, Noirot E, Lherminier J, Simon-Plas F, Heilmann I, Mongrand S (2010) Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane. Plant Physiol 152:2173–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvani L (1791, 1953) Commentary on the effect of electricity on muscular motion (translation of De viribus electricitatis in motu musculari commentarius by Green RM). Norwalk: Burndy Library

    Google Scholar 

  • Gao XQ, Wang XL, Ren F, Chen J, Wang XC (2009) Dynamics of vacuoles and actin filaments in guard cells and their roles in stomatal movement. Plant Cell Environ 32:1108–1116

    Article  CAS  PubMed  Google Scholar 

  • García-Sierra F, Frixione E (1993) Lidocaine, a local anesthetic, reversibly inhibits cytoplasmic streaming in Vallisneria mesophyll cells. Protoplasma 175:153–160

    Article  Google Scholar 

  • Gilroy S, Białasek M, Suzuki N, Gorecka M, Devireddy A, Karpinski S, Mittler R (2016) ROS, calcium and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsworthy A (1983) The evolution of plant action potentials. J Theor Biol 103:645–648

    Article  Google Scholar 

  • Golomb L, Abu-Abied M, Belausov E, Sadot E (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goult BT, Yan J, Schwartz MA (2018) Talin as a mechanosensitive signaling hub. J Cell Biol 217:3776–3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grémiaux A, Yokawa K, Mancuso S, Baluška F (2014) Plant anesthesia supports similarities between animals and plants: Claude Bernard’s forgotten studies. Plant Signal Behav 9:e27886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haraguchi T, Ito K, Duan Z, Rula S, Takahashi K, Shibuya Y, Hagino N, Miyatake Y, Nakano A, Tominaga M (2018) Functional diversity of class XI myosins in Arabidopsis thaliana. Plant Cell Physiol 59:2268–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811

    Article  CAS  PubMed  Google Scholar 

  • Hedrich R, Neher E (2018) Venus flytrap: how an excitable, carnivorous plant works. Trends Plant Sci 23:220–234

    Article  CAS  PubMed  Google Scholar 

  • Hedrich R, Salvador-Recatalà V, Dreyer I (2016) Electrical wiring and long-distance plant communication. Trends Plant Sci 21:376–387

    Article  CAS  PubMed  Google Scholar 

  • Heidecker M, Wegner LH, Binder K, Zimmermann U (2003) Turgor pressure changes trigger characteristic changes in the electrical conductance of the tonoplast and the plasmalemma of the marine alga Valonia utricularis. Plant Cell Environ 26:1035–1051

    Article  Google Scholar 

  • Heimburg T, Jackson AD (2007) On the action potential as a propagating density pulse and the role of anesthetics. Biophys Rev Lett 2:57–78

    Article  CAS  Google Scholar 

  • Herman P, Vecer J, Opekarova M, Vesela P, Jancikova I, Zahumensky J, Malinsky J (2015) Depolarization affects the lateral microdomain structure of yeast plasma membrane. FEBS J 282:419–434

    Article  CAS  PubMed  Google Scholar 

  • Hill SE (1941) The relation between protoplasmic streaming and action potential in Nitella and Chara. Biol Bull 81:296–303

    Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1989) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    Article  Google Scholar 

  • Hlavácková V, Krchnák P, Naus J, Novák O, Spundová M, Strnad M (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225:235–244

    Article  PubMed  CAS  Google Scholar 

  • Hörmann G (1898) Studien über die Protoplasmaströmung bei den Characeen. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Humboldt A (1797) Versuche über die gereizte Muskel- und Nervenfaser nebst Vermuthungen über den chemischen Process des Lebens in der Thier- und Pflanzenwelt. Posen, Decker und Compagnie, Berlin

    Google Scholar 

  • Iwasa K, Tasaki I, Gibbons RC (1980) Swelling of nerve fibers associated with action potential. Science 210:338–339

    Article  CAS  PubMed  Google Scholar 

  • Kanzawa N, Hoshino Y, Chiba M, Hoshino D, Kobayashi H, Kamasawa N, Kishi Y, Osumi M, Sameshima M, Tsuchiya T (2006) Change in the actin cytoskeleton during seismonastic movement of Mimosa pudica. Plant Cell Physiol 47:531–539

    Article  CAS  PubMed  Google Scholar 

  • Karpiński S, Szechyńska-Hebda M (2010) Secret life of plants: from memory to intelligence. Plant Signal Behav 5:1391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kersey YM, Hepler PK, Palevitz BA, Wessells NK (1976) Polarity of actin filaments in Characean algae. Proc Natl Acad Sci USA 73:165–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keynes RD (1958) The nerve impulse and the squid. Sci Am 199:83–90

    Article  CAS  PubMed  Google Scholar 

  • Kikuyama M (1986) Tonoplast action potential of Characeae. Plant Cell Physiol 27:1461–1468

    CAS  Google Scholar 

  • Kikuyama M (2001) Role of Ca2+ in membrane excitation and cell motility in Characean cells as a model system. Int Rev Cytol 201:85–114

    Article  CAS  PubMed  Google Scholar 

  • Kikuyama M, Shimmen M (1997) Role of Ca2+ on triggering tonoplast action potential in intact Nitella flexilis. Plant Cell Physiol 38:941–944

    Article  CAS  Google Scholar 

  • Kikuyama M, Tazawa M (1976) Tonoplast action potential in Nitella in relation to vacuolar chloride concentration. J Membr Biol 29:95–110

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto U, Akabori H (1959) Protoplasmic streaming of an internodal cell of Nitella flexilis; its correlation with electric stimulus. J Gen Physiol 42:1167–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishimoto U, Ohkawa T (1966) Shortening of Nitella internode during excitation. Plant Cell Physiol 7:493–497

    Google Scholar 

  • Kisnieriene V, Lapeikaite I, Pupkis V, Beilby MJ (2019) Modeling the action potential in characeae Nitellopsis obtusa: effect of saline stress. Front Plant Sci 10:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Klappe K, Hummel I, Kok JW (2013) Separation of actin-dependent and actin-independent lipid rafts. Anal Biochem 438:133–135

    Article  CAS  PubMed  Google Scholar 

  • Koshino I, Takakuwa Y (2009) Disruption of lipid rafts by lidocaine inhibits erythrocyte invasion by Plasmodium falciparum. Exp Parasitol 123:381–383

    Article  CAS  PubMed  Google Scholar 

  • Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2004) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U (2015) Comment: 150 years of an integrative plant physiology. Nat Plants 1:1–3

    Article  CAS  Google Scholar 

  • Kutschera U, Baluška F (2015) Julius Sachs (1832–1897) and the unity of life. Plant Signal Behav 10:e1079679

    PubMed  PubMed Central  Google Scholar 

  • Kutschera U, Niklas KJ (2018) Julius Sachs (1868): the father of plant physiology. Am J Bot 105:656–666

    Article  PubMed  Google Scholar 

  • Lan Y, Liu X, Fu Y, Huang S (2018) Arabidopsis class I formins control membrane-originated actin polymerization at pollen tube tips. PLoS Genet 14:e1007789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lavoie P-A, Khazen T, Filion PR (1989) Mechanisms of inhibition of fast axonal transport by local anesthetics. Neuropharmacology 28:175–181

    Article  CAS  PubMed  Google Scholar 

  • Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ, Rigneault H, He HT, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:3245–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Staiger CJ (2018) Understanding cytoskeletal dynamics during the plant immune response. Annu Rev Phytopathol 56:513–533

    Article  CAS  PubMed  Google Scholar 

  • Li J, Pleskot R, Henty-Ridilla JL, Blanchoin L, Potocký M, Staiger CJ (2012a) Arabidopsis capping protein senses cellular phosphatidic acid levels and transduces these into changes in actin cytoskeleton dynamics. Plant Signal Behav 7:1727–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Liu P, Wan Y, Chen T, Wang Q, Mettbach U, Baluška F, Samaj J, Fang X, Lucas WJ, Lin J (2012b) A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24:2105–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LJ, Ren F, Gao XQ, Wei PC, Wang XC (2013) The reorganization of actin filaments is required for vacuolar fusion of guard cells during stomatal opening in Arabidopsis. Plant Cell Environ 36:484–497

    Article  PubMed  CAS  Google Scholar 

  • Li J, Blanchoin L, Staiger CJ (2015) Signaling to actin stochastic dynamics. Annu Rev Plant Biol 66:415–440

    Article  CAS  PubMed  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  • Malinsky J, Tanner W, Opekarova M (2016) Transmembrane voltage: potential to induce lateral microdomains. Biochim Biophys Acta 1861:806–811

    Article  CAS  PubMed  Google Scholar 

  • Mancuso S, Marras AM, Magnus V, Baluška F (2005) Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode. Anal Biochem 341:344–351

    Article  CAS  PubMed  Google Scholar 

  • Mancuso S, Marras AM, Mugnai S, Schlicht M, Žárský V, Li G, Song L, Xue HW, Baluška F (2007) Phospholipase dzeta2 drives vesicular secretion of auxin for its polar cell-cell transport in the transition zone of the root apex. Plant Signal Behav 2:240–244

    Article  PubMed  PubMed Central  Google Scholar 

  • Manoli S, Coppola S, Duranti C, Lulli M, Magni L, Kuppalu N, Nielsen N, Schmidt T, Schwab A, Becchetti A, Arcangeli A (2019) The activity of Kv 11.1 potassium channel modulates F-actin organization during cell migration of pancreatic ductal adenocarcinoma cells. Cancers (Basel) 11(2):e135

    Article  Google Scholar 

  • Masi E, Ciszak M, Stefano G, Renna L, Azzarello E, Pandolfi C, Mugnai S, Baluška F, Arecchi FT, Mancuso S (2009) Spatiotemporal dynamics of the electrical network activity in the root apex. Proc Natl Acad Sci USA 106:4048–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masi E, Ciszak M, Comparini D, Monetti E, Pandolfi C, Azzarello E, Mugnai S, Baluška F, Mancuso S (2015) The electrical network of maize root apex is gravity dependent. Sci Rep 5:7730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menzel D (1988) How do giant plant cells cope with injury? The wound response in siphonous green algae. Protoplasma 144:73–91

    Article  Google Scholar 

  • Mettbach U, Strnad M, Mancuso S, Baluška F (2017) Immunogold-EM analysis reveal Brefeldin A-sensitive clusters of auxin in Arabidopsis root apex cells. Commun Integr Biol 10:e1327105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow IC, Parton RG (2005) Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 6:725–740

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen OG, Bagatolli LA (2015) Lipid domains in model membranes: a brief historical perspective. Essays Biochem 57:1–19

    Article  PubMed  Google Scholar 

  • Němec B (1901) Die Reizleitung und die Reizleitenden Strukturen bei den Pflanzen. Verlag von Gustaf Fischer, Jena

    Google Scholar 

  • Oda K (1975) Recording of the potassium efflux during a single action potential in Chara corallina. Plant Cell Physiol 16:525–528

    CAS  Google Scholar 

  • Oda K (1976) Simultaneous recording of potassium and chloride effluxes during an action potential in Chara corallina. Plant Cell Physiol 17:1085–1088

    CAS  Google Scholar 

  • Okamura Y, Dixon JE (2011) Voltage-sensing phosphatase: its molecular relationship with PTEN. Physiology 26:6–13

    Article  CAS  PubMed  Google Scholar 

  • Okamura Y, Murata Y, Iwasaki H (2009) Voltage-sensing phosphatase: actions and potentials. J Physiol 587:513–520

    Article  CAS  PubMed  Google Scholar 

  • Okamura Y, Kawanabe A, Kawai T (2018) Voltage-sensing phosphatases: biophysics, physiology, and molecular engineering. Physiol Rev 98:2097–2131

    Article  CAS  PubMed  Google Scholar 

  • Osterhout WJV (1936) Electrical phenomena in large plant cells. Physiol Rev 16:216–237

    Article  Google Scholar 

  • Osterhout WJV (1952) Some aspects of protoplasmic motion. J Gen Physiol 35:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palevitz BA, Hepler PK (1975) Identification of actin in situ at the ectoplasm-endoplasm interface of Nitella. Microfilament-chloroplast association. J Cell Biol 65:29–38

    Article  CAS  PubMed  Google Scholar 

  • Palevitz BA, Ash JF, Hepler PK (1974) Actin in the green alga, Nitella. Proc Natl Acad Sci USA 71:363–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YK, Goda Y (2016) Integrins in synapse regulation. Nat Rev Neurosci 17:745–756

    Article  CAS  PubMed  Google Scholar 

  • Pavlovič A, Mancuso S (2011) Electrical signaling and photosynthesis: can they co-exist together? Plant Signal Behav 6:840–842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavlovič A, Slováková L, Pandolfi C, Mancuso S (2011) On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). J Exp Bot 62:1991–2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavlovič A, Jakšová J, Novák O (2017) Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). New Phytol 216:927–938

    Article  PubMed  CAS  Google Scholar 

  • Pedersen CN, Axelsen KB, Harper JF, Palmgren MG (2012) Evolution of plant P-type ATPases. Front Plant Sci 3:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Sancho J, Vanneste S, Lee E, McFarlane HE, Esteban Del Valle A, Valpuesta V, Friml J, Botella MA, Rosado A (2015) The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses. Plant Physiol 168:132–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pickard BG (1973) Action potentials in higher plants. Bot Rev 39:172–201

    Article  Google Scholar 

  • Pleskot R, Pejchar P, Žárský V, Staiger CJ, Potocký M (2012) Structural insights into the inhibition of actin-capping protein by interactions with phosphatidic acid and phosphatidylinositol (4,5)-bisphosphate. PLoS Comput Biol 8(11):e1002765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pleskot R, Li J, Žárský V, Potocký M, Staiger CJ (2013) Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci 18:496–504

    Article  CAS  PubMed  Google Scholar 

  • Pleskot R, Pejchar P, Staiger CJ, Potocký M (2014) When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules. Front Plant Sci 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Pristerà A, Okuse K (2011) Building excitable membranes: lipid rafts and multiple controls on trafficking of electrogenic molecules. Neuroscientist 18:70–81

    Article  PubMed  CAS  Google Scholar 

  • Pristerà A, Baker MD, Okuse K (2012) Association between tetrodotoxin resistant channels and lipid rafts regulates sensory neuron excitability. PLoS One 7:e40079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radford JE, White RG (1998) Localization of a myosin-like protein to plasmodesmata. Plant J 14:743–750

    Article  CAS  PubMed  Google Scholar 

  • Radford JE, White RG (2011) Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata. Protoplasma 248:205–216

    Article  CAS  PubMed  Google Scholar 

  • Reichelt S, Knight AE, Hodge TP, Baluška F, Šamaj J, Volkmann D, Kendrick-Jones J (1999) Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19:555–567

    Article  CAS  PubMed  Google Scholar 

  • Richards SL, Laohavisit A, Mortimer JC, Shabala L, Swarbreck SM, Shabala S, Davies JM (2014) Annexin 1 regulates the H2O2-induced calcium signature in Arabidopsis thaliana roots. Plant J 77:136–145

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema MR, Steinmeyer R, Staal M, Hedrich R (2001) Single guard cell recordings in intact, plants: light-induced hyperpolarization of the plasma membrane. Plant J 26:1–13

    Article  CAS  PubMed  Google Scholar 

  • Rosasco MG, Gordon SE, Bajjalieh SM (2015) Characterization of the functional domains of a mammalian voltage-sensitive phosphatase. Biophys J 109:2480–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan JM, Nebenführ A (2018) Update on myosin motors: molecular mechanisms and physiological functions. Plant Physiol 176:119–127

    Article  CAS  PubMed  Google Scholar 

  • Saheki Y, De Camilli P (2017) The extended synaptotagmins. Biochim Biophys Acta Mol Cell Res 1864:1490–1493

    Article  CAS  PubMed  Google Scholar 

  • Šamaj J, Read ND, Volkmann D, Menzel D, Baluška F (2005) The endocytic network in plants. Trends Cell Biol 15:425–433

    Article  PubMed  CAS  Google Scholar 

  • Sattarzadeh A, Franzen R, Schmelzer E (2008) The Arabidopsis class VIII myosin ATM2 is involved in endocytosis. Cell Motil Cytoskeleton 65:457–468

    Article  CAS  PubMed  Google Scholar 

  • Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluška F, Botella MA (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20:3374–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schapire AL, Valpuesta V, Botella MA (2009) Plasma membrane repair in plants. Trends Plant Sci 14:645–652

    Article  CAS  PubMed  Google Scholar 

  • Scherzer S, Shabala L, Hedrich B, Fromm J, Bauer H, Munz E, Jakob P, Al-Rascheid KAS, Kreuzer I, Becker D, Eiblmeier M, Rennenberg H, Shabala S, Bennett M, Neher E, Hedrich R (2017) Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells. Proc Natl Acad Sci USA 114:4822–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheuring D, Löfke C, Krüger F, Kittelmann M, Eisa A, Hughes L, Smith RS, Hawes C, Schumacher K, Kleine-Vehn J (2016) Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc Natl Acad Sci USA 113:452–457

    Article  CAS  PubMed  Google Scholar 

  • Schlicht M, Strnad M, Scanlon MJ, Mancuso S, Hochholdinger F, Palme K, Volkmann D, Menzel D, Baluška F (2006) Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal Behav 1:122–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Seagull RW, Falconer MM, Weerdenburg CA (1987) Microfilaments: dynamic arrays in higher plant cells. J Cell Biol 104:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Senju Y, Lappalainen P (2019) Regulation of actin dynamics by PI(4,5)P2 in cell migration and endocytosis. Curr Opin Cell Biol 56:7–13

    Article  CAS  PubMed  Google Scholar 

  • Shepherd VA (2005) From semi-conductors to the rhythms of sensitive plants: the research of J. C. Bose. Cell Mol Biol 51:607–619

    CAS  PubMed  Google Scholar 

  • Shepherd VA, Beilby MJ, Al Khazaaly SA, Shimmen T (1998) Mechano-perception in Chara cells: the influence of salinity and calcium on touch-activated receptor potentials, action potentials and ion transport. Plant Cell Environ 31:1575–1591

    Article  CAS  Google Scholar 

  • Shepherd VA, Beilby MJ, Bisson MA (2004) When is a cell not a cell? A theory relating coenocytic structure to the unusual electrophysiology of Ventricaria ventricosa (Valonia ventricosa). Protoplasma 223:79–91

    Article  CAS  PubMed  Google Scholar 

  • Shimmen T, Nishikawa S (1988) Studies on the tonoplast action potential of Nitella flexilis. J Membr Biol 101:133–140

    Article  CAS  Google Scholar 

  • Shimmen T, Yokota E (2004) Cytoplasmic streaming in plants. Curr Opin Cell Biol 16:68–72

    Article  CAS  PubMed  Google Scholar 

  • Shimment T (2007) The sliding theory of cytoplasmic streaming: fifty years of progress. J Plant Res 120:31–43

    Article  CAS  Google Scholar 

  • Siao W, Wang P, Voigt B, Hussey PJ, Baluška F (2016) Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum-plasma membrane contact sites. J Exp Bot 67:6161–6171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibaoka T (1969) Physiology of rapid movements in higher plants. Annu Rev Plant Physiol 20:165–184

    Article  CAS  Google Scholar 

  • Sibaoka T (1991) Rapid plant movements triggered by action potentials. Bot Mag Tokyo 104:73–95

    Article  Google Scholar 

  • Sibaoka T, Oda K (1956) Shock stoppage of the protoplasmic streaming in relation to the action potential in Chara. Sci Rep Tohoku Univ IV Biol 22:157–166

    Google Scholar 

  • Simonsen AC, Boye TL, Nylandsted J (2019) Annexins bend wound edges during plasma membrane repair. Curr Med Chem (in press)

    Google Scholar 

  • Soykan T, Kaempf N, Sakaba T, Vollweiter D, Goerdeler F, Puchkov D, Kononenko NL, Haucke V (2017) Synaptic vesicle endocytosis occurs on multiple timescales and is mediated by formin-dependent actin assembly. Neuron 93:854–866

    Article  CAS  PubMed  Google Scholar 

  • Spanswick RM (1972) Electrical coupling between cells of higher plants: a direct demonstration of intercellular communication. Planta 102:215–227

    Article  CAS  PubMed  Google Scholar 

  • Spanswick RM, Costerton JW (1967) Plasmodesmata in Nitella translucens: structure and electrical resistance. J Cell Sci 2:451–464

    CAS  PubMed  Google Scholar 

  • Stahlberg R (2006) Historical overview on plant neurobiology. Plant Signal Behav 1:6–8

    Article  Google Scholar 

  • Staiger CJ, Baluška F, Volkmann D, Barlow PW (2000) Actin – a dynamic framework for multiple plant cell functions. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263:390–394

    Article  CAS  PubMed  Google Scholar 

  • Straub FB (1942) Actin. Stud Inst Med Chem Univ Szeged 2:3–15

    CAS  Google Scholar 

  • Sukhov V (2016) Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth Res 130:373–387

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Sukhova E, Vodeneev V (2019) Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. Prog Biophys Mol Biol 146:63–84

    Article  CAS  PubMed  Google Scholar 

  • Szechyńska-Hebda M, Kruk J, Górecka M, Karpińska B, Karpiński S (2010) Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis. Plant Cell 22:2201–2218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szechyńska-Hebda M, Lewandowska M, Karpiński S (2017) Electrical signaling, photosynthesis and systemic acquired acclimation. Front Physiol 8:684

    Article  PubMed  PubMed Central  Google Scholar 

  • Szent-Györgyi A (1942) The contraction of myosin threads. Stud Inst Med Chem Univ Szeged 1:17–26

    Google Scholar 

  • Szent-Györgyi A (1943) Observations on actomyosin. Stud Inst Med Chem Univ Szeged 3:86–92

    Google Scholar 

  • Szent-Györgyi AG (2004) The early history of the biochemistry of muscle contraction. J Gen Physiol 123:631–641

    Article  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Takatsuka H, Higaki T, Umeda M (2018) Actin reorganization triggers rapid cell elongation in roots. Plant Physiol 178:1130–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang SKY, Marshall WF (2017) Self-repairing cells: how single cells heal membrane ruptures and restore lost structures. Science 356:1022–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasaki I (1999) Evidence for phase transition in nerve fibers, cells and synapses. Ferroelectrics 220:305–316

    Article  CAS  Google Scholar 

  • Tasaki I, Iwasa K, Gibbons RC (1980) Mechanical changes in crab nerve fibers during action potential. Jpn J Physiol 30:897–905

    Article  CAS  PubMed  Google Scholar 

  • Tazawa M, Kishimoto U (1968) Cessation of cytoplasmic streaming of Chara internodes during action potential. Plant Cell Physiol 9:361–368

    Google Scholar 

  • Togo T, Alderton JM, Bi GQ, Steinhardt RA (1999) The mechanism of facilitated cell membrane resealing. J Cell Sci 112:719–731

    CAS  PubMed  Google Scholar 

  • Traas JA, Doonan JH, Rawlins DJ, Shaw PJ, Watts J, Lloyd CW (1987) An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol 105:387–395

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Tamura K, Hara-Nishimura I (2015) Functions of plant-specific myosin XI: from intracellular motility to plant postures. Curr Opin Plant Biol 28:30–38

    Article  CAS  PubMed  Google Scholar 

  • Umrath K (1932) Der Erregungsvorgang bei Nitella mucronata. Protoplasma 17:258–300

    Article  Google Scholar 

  • Verchot-Lubicz J, Goldstein RE (2010) Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma 240:99–107

    Article  PubMed  Google Scholar 

  • Vermeer JEM, van Wijk R, Goedhart J, Geldner N, Chory J, Gadella TWJ Jr, Munnik T (2017) In vivo imaging of diacylglycerol at the cytoplasmic leaflet of plant membranes. Plant Cell Physiol 58:1196–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt B, Timmers AC, Šamaj J, Müller J, Baluška F, Menzel D (2005a) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84:595–608

    Article  CAS  PubMed  Google Scholar 

  • Voigt B, Timmers AC, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005b) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621

    Article  CAS  PubMed  Google Scholar 

  • Volkmann D, Baluška F (1999) Actin cytoskeleton in plants: from transport networks to signaling networks. Microsc Res Tech 47:135–154

    Article  CAS  PubMed  Google Scholar 

  • Volkmann D, Mori T, Tirlapur UK, König K, Fujiwara T, Kendrick-Jones J, Baluška F (2003) Unconventional myosins of the plant-specific class VIII: endocytosis, cytokinesis, plasmodesmata/pit-fields, and cell-to-cell coupling. Cell Biol Int 27:289–291

    Article  CAS  PubMed  Google Scholar 

  • Volkov AG (2019) Signaling in electrical networks of the Venus flytrap (Dionaea muscipula Ellis). Bioelectrochemistry 125:25–32

    Article  CAS  PubMed  Google Scholar 

  • Volkov AG, Carrell H, Markin VS (2009) Biologically closed electrical circuits in Venus flytrap. Plant Physiol 149:1661–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkov AG, Vilfranc C, Murphy VA, Mitchell CM, Volkova MI, O’Neal L, Markin VS (2013) Electrotonic and action potentials in the Venus flytrap. J Plant Physiol 170:838–846

    Article  CAS  PubMed  Google Scholar 

  • Wacke M, Thiel G (2001) Electrically triggered all-or-none Ca2+ liberation during action potential in the giant alga Chara. J Gen Physiol 118:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wacke M, Thiel G, Hutt MT (2003) Ca2+ dynamics during membrane excitation of green alga Chara: model simulations and experimental data. J Membr Biol 191:179–192

    Article  CAS  PubMed  Google Scholar 

  • Walker DJ, Leigh RA, Miller AJ (2006) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93:10510–10514

    Article  Google Scholar 

  • Wan YL, Eisinger W, Ehrhardt D, Kubitscheck U, Baluška F, Briggs W (2008) The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. Mol Plant 1:103–117

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Jasik J, Wang L, Hao H, Volkmann D, Menzel D, Mancuso S, Baluška F, Lin J (2012) The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell 24:551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Hussey PJ (2015) Interactions between plant endomembrane systems and the actin cytoskeleton. Front Plant Sci 6:422

    PubMed  PubMed Central  Google Scholar 

  • Wang P, Hawes C, Hussey PJ (2017a) Plant endoplasmic reticulum-plasma membrane contact sites. Trends Plant Sci 22:289–297

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Hawkins TJ, Hussey PJ (2017b) Connecting membranes to the actin cytoskeleton. Curr Opin Plant Biol 40:71–76

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Hawes C, Richardson C, Hussey PJ (2018) Characterization of proteins localized to plant ER-PM contact sites. Methods Mol Biol 1691:23–31

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Trimbuch T, Camacho-Pérez M, Rost BR, Brokowski B, Söhl-Kielczynski B, Felies A, Davis MW, Rosenmund C, Jorgensen EM (2014) Clathrin regenerates synaptic vesicles from endosomes. Nature 515:228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Mamer LE, Raychaudhuri S, Luvsanjav D, Eisen J, Trimbuch T, Söhl-Kielczynski B, Fenske P, Milosevic I, Rosenmund C, Jorgensen EM (2018) Synaptojanin and endophilin mediate neck formation during ultrafast endocytosis. Neuron 98:1184–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne R (1993) Excitability in plant cells. Am Sci 81:140–151

    Google Scholar 

  • Weinrich M, Worcester DL (2013) Xenon and other volatile anesthetics change domain structure in model lipid raft membranes. J Phys Chem B 117:16141–16147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White RG, Barton DA (2011) The cytoskeleton in plasmodesmata: a role in intercellular transport? J Exp Bot 62:5249–5266

    Article  CAS  PubMed  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb ER, Reilly AJ, Skipper YD, Doherty HM, O'Donnell PJ, Bowies DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

  • Xue Y, Xing J, Wan Y, Lv X, Fan L, Zhang Y, Song K, Wang L, Wang X, Deng X, Baluška F, Christie JM, Lin J (2018) Arabidopsis blue light receptor phototropin 1 undergoes blue light-induced activation in membrane microdomains. Mol Plant 11:846–859

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Kawamura Y, Minami A, Uemura M (2008) Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20:3389–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T, Takata N, Uemura M, Kawamura Y (2010) Arabidopsis synaptotagmin SYT1, a type I signal-anchor protein, requires tandem C2 domains for delivery to the plasma membrane. J Biol Chem 285:23165–23176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao H, Xu Q, Yuan M (2008) Actin dynamics mediates the changes of calcium level during the pulvinus movement of Mimosa pudica. Plant Signal Behav 3:954–960

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokawa K, Kagenishi T, Pavlovic A, Gall S, Weiland M, Mancuso S, Baluška F (2018) Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Ann Bot 122:747–756

    CAS  PubMed  Google Scholar 

  • Yokawa K, Kagenishi T, Baluška F (2019) Anesthetics, anesthesia, and plants. Trends Plant Sci 24:12–14

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka T, Takenaka T (1979) Nitellopsis obtusa internodal cell birefringence change during action potential. Biophys Struct Mech 5:1–10

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Zhang X, Qu Y, Li R, Baluška F, Wan Y (2015) Mapping of membrane lipid order in root apex zones of Arabidopsis thaliana. Front Plant Sci 6:1151

    PubMed  PubMed Central  Google Scholar 

  • Zhu J, Bailly A, Zwiewka M, Sovero V, Di Donato M, Ge P, Oehri J, Aryal B, Hao P, Linnert M, Burgardt NI, Lücke C, Weiwad M, Michel M, Weiergräber OH, Pollmann S, Azzarello E, Mancuso S, Ferro N, Fukao Y, Hoffmann C, Wedlich-Söldner R, Friml J, Thomas C, Geisler M (2016) TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics. Plant Cell 28:930–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler WH, Gingras AR, Critchley DR, Emsley J (2008) Integrin connections to the cytoskeleton through talin and vinculin. Biochem Soc Trans 36:235–239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mary Beilby (School of Physics, The University of NSW, Sydney, Australia) for the critical reading and commenting of our chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Baluška .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baluška, F., Mancuso, S. (2019). Actin Cytoskeleton and Action Potentials: Forgotten Connections. In: Sahi, V., Baluška, F. (eds) The Cytoskeleton. Plant Cell Monographs, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-33528-1_5

Download citation

Publish with us

Policies and ethics