Skip to main content

Chloroplast Actin Filaments Involved in Chloroplast Photorelocation Movements

  • Chapter
  • First Online:
The Cytoskeleton

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 24))

Abstract

Plants have evolved sophisticated mechanisms to survive in various environmental changes. Chloroplast movement is an essential response to optimize photosynthesis and to avoid photodamage under fluctuating light conditions. Chloroplasts accumulate at periclinal walls to maximize light absorption under weak light while they move to anticlinal walls to minimize light exposure under strong light. The light strength is monitored by blue light receptor phototropins in general. In Arabidopsis thaliana, both phototropin1 (phot1) and phototropin2 (phot2) are involved in accumulation response, but phot2 is specifically involved in avoidance response. Such appropriate photorelocation movements of chloroplasts are mediated by a structure made of short actin filaments specialized for chloroplast movement. The short actin filaments are dynamically reorganized on the leading edges of moving chloroplasts, so that named chloroplast actin (cp-actin) filaments. In this chapter, we summarize recent knowledge about cp-actin filaments and next challenges to elucidate the underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anielska-Mazur A, Bernaś T, Gabryś H (2009) In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses. BMC Plant Biol 9:64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H (2012) Blue light signalling in chloroplast movements. J Exp Bot 63:1559–1574

    Article  PubMed  CAS  Google Scholar 

  • Blanchoin L, Staiger CJ (2010) Plant formins: diverse isoforms and unique molecular mechanism. Biochim Biophys Acta 1803:201–206

    Article  CAS  PubMed  Google Scholar 

  • Chalkia D, Nikolaidis N, Makalowski W, Klein J, Nei M (2008) Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol Biol Evol 25:2717–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBlasio SL, Mullen JL, Luesse DR, Hangarter RP (2003) Phytochrome modulation of blue light-induced chloroplast movements in Arabidopsis. Plant Physiol 133:1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deeks MJ, Cvrckova F, Machesky LM, Mikitova V, Ketelaar T, Zarsky V, Davies B, Hussey PJ (2005) Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol 168:529–540

    Article  CAS  PubMed  Google Scholar 

  • Diao M, Ren S, Wang Q, Qian L, Shen J, Liu Y, Huang S (2018) Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata. elife 7:e36316

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan Z, Tominaga M (2018) Actin-myosin XI: an intracellular control network in plants. Biochem Biophys Res Commun 506:403–408

    Article  CAS  PubMed  Google Scholar 

  • Firat-Karalar EN, Welch MD (2011) New mechanisms and functions of actin nucleation. Curr Opin Cell Biol 23:4–13

    Article  CAS  PubMed  Google Scholar 

  • Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726

    Article  CAS  PubMed  Google Scholar 

  • Haupt W (1956) Chloroplastenbewegung. Z Bot 44:455–462

    Google Scholar 

  • Higa T, Hasegawa S, Hayasaki Y, Kodama Y, Wada M (2017) Temperature-dependent signal transmission in chloroplast accumulation response. J Plant Res 130:779–789

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa S, Yamada N, Suetsugu N, Wada M, Kadota A (2011) Red light, phot1 and JAC1 modulate phot2-dependent reorganization of chloroplast actin filaments and chloroplast avoidance movement. Plant Cell Physiol 52:1422–1432

    Article  CAS  PubMed  Google Scholar 

  • Ingouff M, Fitz Gerald JN, Guerin C, Robert H, Sorensen MB, Van Damme D, Geelen D, Blanchoin L, Berger F (2005) Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol 7:374–380

    Article  CAS  PubMed  Google Scholar 

  • Jaedicke K, Lichtenthaler AL, Meyberg R, Zeidler M, Hughes J (2012) A phytochrome-phototropin light signaling complex at the plasma membrane. Proc Natl Acad Sci U S A 109:12231–12236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadota A, Wada M (1992a) Photoinduction of formation of circular structures by microfilaments on chloroplasts during intracellular orientation in protonemal cells of the fern Adiantum capillus-veneris. Protoplasma 167:97–107

    Article  Google Scholar 

  • Kadota A, Wada M (1992b) Photoorientation of chloroplasts in protonemal cells of the fern Adiantum as analyzed by use of a video-tracking system. Bot Mag Tokyo 105:265–279

    Article  Google Scholar 

  • Kadota A, Sato Y, Wada M (2000) Intracellular chloroplast photorelocation in the moss Physcomitrella patens is mediated by phytochrome as well as by a blue-light receptor. Planta 210:932–937

    Article  CAS  PubMed  Google Scholar 

  • Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada M (2009) Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc Natl Acad Sci U S A 106:13106–13111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagawa T, Wada M (1996) Phytochrome- and blue-light-absorbing pigment-mediated directional movement of chloroplasts in dark-adapted prothallial cells of fern Adiantum as analyzed by microbeam irradiation. Planta 198:488–493

    Article  CAS  Google Scholar 

  • Kagawa T, Wada M (2004) Velocity of chloroplast avoidance movement is fluence rate dependent. Photochem Photobiol Sci 3:592–595

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy MK, Meagher RB (1999) Actin-organelle interaction: association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil Cytoskeleton 44:110–118

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M, Kagawa T, Sato Y, Kiyosue T, Wada M (2004) Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol 135:1388–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai H, Kanegae T, Christensen S, Kiyosue T, Sato Y, Imaizumi T, Kadota A, Wada M (2003) Responses of ferns to red light are mediated by an unconventional photoreceptor. Nature 421:287–290

    Article  CAS  PubMed  Google Scholar 

  • Kong S-G, Arai Y, Suetsugu N, Yanagida T, Wada M (2013) Rapid severing and motility of chloroplast-actin filaments are required for the chloroplast avoidance response in Arabidopsis. Plant Cell 25:572–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzeszowiec W, Gabryś H (2007) Phototropin mediated relocation of myosins in Arabidopsis thaliana. Plant Signal Behav 2:333–336

    Article  PubMed  PubMed Central  Google Scholar 

  • Krzeszowiec W, Rajwa B, Dobrucki J, Gabryś H (2007) Actin cytoskeleton in Arabidopsis thaliana under blue and red light. Biol Cell 99:251–260

    Article  CAS  PubMed  Google Scholar 

  • Kumatani T, Sakurai-Ozato N, Miyawaki N, Yokota E, Shimmen T, Terashima I, Takagi S (2006) Possible association of actin filaments with chloroplasts of spinach mesophyll cells in vivo and in vitro. Protoplasma 229:45–52

    Article  CAS  PubMed  Google Scholar 

  • Lan Y, Liu X, Fu Y, Huang S (2018) Arabidopsis class I formins control membrane-originated actin polymerization at pollen tube tips. PLoS Genet 14:e1007789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li FW, Mathews S (2016) Evolutionary aspects of plant photoreceptors. J Plant Res 129:115–122

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Shen Y, Cai C, Zhong C, Zhu L, Yuan M, Ren H (2010) The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell 22:2710–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li FW, Villarreal JC, Kelly S, Rothfels CJ, Melkonian M, Frangedakis E, Ruhsam M, Sigel EM, Der JP, Pittermann J, Burge DO, Pokorny L, Larsson A, Chen T, Weststrand S, Thomas P, Carpenter E, Zhang Y, Tian Z, Chen L, Yan Z, Zhu Y, Sun X, Wang J, Stevenson DW, Crandall-Stotler BJ, Shaw AJ, Deyholos MK, Soltis DE, Graham SW, Windham MD, Langdale JA, Wong GK, Mathews S, Pryer KM (2014) Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc Natl Acad Sci U S A 111:6672–6677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozue K, Kanegae T, Imaizumi T, Fukuda S, Okamoto H, Yeh KC, Lagarias JC, Wada M (1998) A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc Natl Acad Sci U S A 95:15826–15830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A, Wada M (2003) Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa K, Yamasato A, Kong S-G, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 148:829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paves H, Truve E (2007) Myosin inhibitors block accumulation movement of chloroplasts in Arabidopsis thaliana leaf cells. Protoplasma 230:165–169

    Article  CAS  PubMed  Google Scholar 

  • Sakai Y, Takagi S (2005) Reorganized actin filaments anchor chloroplasts along the anticlinal walls of Vallisneria epidermal cells under high-intensity blue light. Planta 221:823–830

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Wada M, Kadota A (2001) Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J Cell Sci 114:269–279

    CAS  PubMed  Google Scholar 

  • Sattarzadeh A, Krahmer J, Germain AD, Hanson MR (2009) A myosin XI tail domain homologous to the yeast myosin vacuole-binding domain interacts with plastids and stromules in Nicotiana benthamiana. Mol Plant 2(6):1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Senn G (1908) Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren. Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Sparkes I (2011) Recent advances in understanding plant myosin function: life in the fast lane. Mol Plant 4:805–812

    Article  CAS  PubMed  Google Scholar 

  • Suetsugu N, Wada M (2016) Evolution of the cp-actin-based motility system of chloroplasts in green plants. Front Plant Sci 7:561

    Article  PubMed  PubMed Central  Google Scholar 

  • Suetsugu N, Mittmann F, Wagner G, Hughes J, Wada M (2005) A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution. Proc Natl Acad Sci U S A 102:13705–13709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suetsugu N, Dolja VV, Wada M (2010a) Why have chloroplasts developed a unique motility system? Plant Signal Behav 5:1190–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQP, Kadota A, Wada M (2010b) Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:8860–8865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suetsugu N, Sato Y, Tsuboi H, Kasahara M, Imaizumi T, Kagawa T, Hiwatashi Y, Hasebe M, Wada M (2012) The KAC family of kinesin-like proteins is essential for the association of chloroplasts with the plasma membrane in land plants. Plant Cell Physiol 53:1854–1865

    Article  CAS  PubMed  Google Scholar 

  • Suetsugu N, Higa T, Gotoh E, Wada M (2016) Light-induced movements of chloroplasts and nuclei are regulated in both cp-actin-filament-dependent and -independent manners in Arabidopsis thaliana. PLoS One 11:e0157429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takagi S (2000) Roles for actin filaments in chloroplast motility and anchoring. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer Academic, Dordrecht, The Netherlands, pp 203–212

    Chapter  Google Scholar 

  • Takagi S (2003) Actin-based photo-orientation movement of chloroplasts in plant cells. J Exp Biol 206:1963–1969

    Article  CAS  PubMed  Google Scholar 

  • Takagi S, Takamatsu H, Sakurai-Ozato N (2009) Chloroplast anchoring: its implications for the regulation of intracellular chloroplast distribution. J Exp Bot 60:3301–3310

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu H, Takagi S (2011) Actin-dependent chloroplast anchoring is regulated by Ca2+-calmodulin in spinach mesophyll cells. Plant Cell Physiol 52:1973–1982

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi H, Wada M (2011) Chloroplasts can move in any direction to avoid strong light. J Plant Res 124:201–210

    Article  PubMed  Google Scholar 

  • Usami H, Maeda T, Fujii Y, Oikawa K, Takahashi F, Kagawa T, Wada M, Kasahara M (2012) CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens. Planta 236:1889–1897

    Article  CAS  PubMed  Google Scholar 

  • van Gisbergen PA, Bezanilla M (2013) Plant formins: membrane anchors for actin polymerization. Trends Cell Biol 23:227–233

    Article  PubMed  CAS  Google Scholar 

  • Wada M (2013) Chloroplast movement. Plant Sci 210:177–182

    Article  CAS  PubMed  Google Scholar 

  • Wada M (2016) Chloroplast and nuclear photorelocation movements. Proc Jpn Acad Ser B Phys Biol Sci 92:387–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Kong S-G (2018) Actin-mediated movement of chloroplasts. J Cell Sci 131:jcs210310

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Xue X, Ren H (2012) New insights into the role of plant formins: regulating the organization of the actin and microtubule cytoskeleton. Protoplasma 249(Suppl 2):S101–S107

    Article  PubMed  CAS  Google Scholar 

  • Whippo CW, Khurana P, Davis PA, DeBlasio SL, DeSloover D, Staiger CJ, Hangarter RP (2011) THRUMIN1 is a light-regulated actin-bundling protein involved in chloroplast motility. Curr Biol 21:59–64

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Suetsugu N, Wada M, Kadota A (2011) Phototropin-dependent biased relocalization of cp-actin filaments can be induced even when chloroplast movement is inhibited. Plant Signal Behav 6:1651–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita H, Sato Y, Kanegae T, Kagawa T, Wada M, Kadota A (2011) Chloroplast actin filaments organize meshwork on the photorelocated chloroplasts in the moss Physcomitrella patens. Planta 233:357–368

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S, Yang Z (2009) Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell 21:3868–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurzycki J (1955) Chloroplast arrangement as a factor in photosynthesis. Acta Soc Bot Pol 24:27–63

    Article  Google Scholar 

Download references

Acknowledgment

The work was supported by the grants from the Japan Society for the Promotion of Science (JSPS) (No. 20227001, 23120523, 25120721, 25251033, and 16K14758) and from Ohsumi Frontier Science Foundation to M.W. and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1D1A3B03935947) and the Next-Generation BioGreen 21 Program grant funded by the Korea government Rural Development Administration (RDA) (No. PJ01366901) to S.-G. K.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wada, M., Kong, SG. (2019). Chloroplast Actin Filaments Involved in Chloroplast Photorelocation Movements. In: Sahi, V., Baluška, F. (eds) The Cytoskeleton. Plant Cell Monographs, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-33528-1_3

Download citation

Publish with us

Policies and ethics