Skip to main content

Engineering Notes on Concepts of the Finite Element Method for Elliptic Problems

  • Chapter
  • First Online:
  • 791 Accesses

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 597))

Abstract

In this contribution, we discuss some basic mechanical and mathematical features of the finite element technology for elliptic boundary value problems. Originating from an engineering perspective, we will introduce step by step of some basic mathematical concepts in order to set a basis for a deeper discussion of the rigorous mathematical approaches. In this context, we consider the boundedness of functions, the classification of the smoothness of functions, classical and mixed variational formulations as well as the \(H^{-1}\)-FEM in linear elasticity. Another focus is on the analysis of saddle point problems occurring in several mixed finite element formulations, especially on the solvability and stability of the associated discretized versions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    nonnegative real values \(\mathbb {R}^+_0\), positive real values \(\mathbb {R}^+=\mathbb {R}^+_0\backslash 0\).

  2. 2.

    positive integers \(\mathrm{I\! N}_+=\{1,2,3,\dots \},\) nonnegative integers \(\mathrm{I\! N}_0=\{0,1,2,3,\dots \}=\mathrm{I\! N}_+ \cup \{0\}\).

  3. 3.

    The derivatives occurring in \(H^m({\mathcal B})\) have to be interpreted as weak or generalized derivatives. Classical derivatives are functions defined pointwise on an interval. A weak derivative need only to be locally integrable. If the function is sufficiently smooth, e.g., \(v\in C^m(\overline{{\mathcal B}})\), then its weak derivatives \(D^\alpha u\) coincide with the classical ones for \(|\alpha |\le m\).

  4. 4.

    Note that a restriction to homogeneous Dirichlet boundary conditions is only of technical nature and does not constitute a loss of generality, see, e.g., Braess (1997).

References

  • Auricchio, F., Brezzi, F., & Lovadina, C. (2004). Mixed finite element methods. In E. Stein, R. de Borst, & T. J. R. Hughes (Eds.), Encyclopedia of computational mechanics (Chap. 9, pp. 238–277). Wiley and Sons.

    Google Scholar 

  • Bathe, K.-J. (1996). Finite element procedures. New Jersey: Prentice Hall.

    MATH  Google Scholar 

  • Becker, E. B., Carey, G. F. & Oden, J. T. (1981). Finite elements, an introduction: Volume I. Prentice-Hall.

    Google Scholar 

  • Berdichevsky, V. L. (2009). Variational principles of continuum mechanics. Springer.

    Google Scholar 

  • Boffi, D., Brezzi, F., & Fortin, M. (2009). Reduced symmetry elements in linear elasticity. Communications on Pure and Applied Analysis, 8, 95–121.

    MathSciNet  MATH  Google Scholar 

  • Boffi, D., Brezzi, F., & Fortin, M. (2013). Mixed finite element methods and applications. Heidelberg: Springer.

    Book  Google Scholar 

  • Braess, D. (1997). Finite elemente (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Brenner, S. C. & Scott, L. R. (2002). The mathematical theory of finite element methods. In Texts in applied mathematics (Vol. 15, 2nd edition). New York: Springer.

    Google Scholar 

  • Brezzi F. (1974). On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique, 8(2), 129–151.

    Article  MathSciNet  Google Scholar 

  • Chapelle, D., & Bathe, K.-J. (1993). The inf-sup test. Computers and Structures, 47, 537–545.

    Google Scholar 

  • Crouzeix, M., & Raviart, P.-A. (1973). Conforming and nonconforming finite element methods for solving the stationary stokes equations i. Revue francaise d’automatique, informatique, recherche operationnelle, 7(3), 33–75.

    Article  MathSciNet  Google Scholar 

  • Devendran, D., May, S., & Corona, E. (2009). Computational fluid dynamics reading group: Finite element methods for stokes and the infamous inf-sup condition.

    Google Scholar 

  • Ern, A., & Guermond, J.-L. (2013). Theory and practice of finite elements (Vol. 159). Springer Science & Business Media.

    Google Scholar 

  • Gockenbach, M. S. (2006). Understanding and implementing the finite element method. SIAM.

    Google Scholar 

  • Goebbels, S. (2015). An inequality for negative norms with application to errors of finite element methods.

    Google Scholar 

  • Hood, P., & Taylor, C. (1974). Navier-stokes equations using mixed interpolation. In J. T. Oden, O. C. Zienkiewicz, R. H. Gallagher, & C. Taylor (Eds.), Finite element methods in flow problems (pp. 121–132). UAH Press.

    Google Scholar 

  • Hughes, T. J. R. (1987). The finite element method. Englewood Cliffs, New Jersey: Prentice Hall.

    Google Scholar 

  • Kendall, R. P., & Wheeler, M. F. (1976). A Crank-Nicolson H\(^{-1}\)-Galerkin procedure for parabolic problems in a single-space variable. SIAM Journal on Numerical Analysis, 13, 861–876.

    Article  MathSciNet  Google Scholar 

  • Oden, J. T., & Carey, G. F. (1983). Finite elements. Mathematical aspects. Volume IV. Prentice-Hall.

    Google Scholar 

  • Oden, J. T., & Reddy, J. N. (1976). An introduction to the mathematical theory of finite elements. Wiley.

    Google Scholar 

  • Rachford, H. H., Wheeler, J. R., & Wheeler, M. F. (1974). An H\(^{-1}\)-Galerkin procedure for the two-point boundary value problem. In C. de Boor (Ed.), Mathematical Aspects of Finite Elements in Partial Differential Equations, Proceedings of Symposium, Conducted by the Mathematics Research Center, The University of Wisconsin-Madison. Academic Press.

    Google Scholar 

  • Royden, H. L. (1968). Real analysis. New York: Macmillan.

    MATH  Google Scholar 

  • Thomée, V. (1980). Negative norm estimates and superconvergence in Galerkin methods for parabolic problems. Mathematics of Computation, 34(149), 93–113.

    Article  MathSciNet  Google Scholar 

  • Thomée, V. (2006). Galerkin finite element methods for parabolic problems. Berlin, Heidelberg: Springer.

    MATH  Google Scholar 

  • Wriggers, P. (2008). Nonlinear finite element methods. Springer.

    Google Scholar 

Download references

Acknowledgements

We thank the DFG for the financial support within the SPP 1748 Reliable Simulation Techniques in Solid Mechanics. Development of Non-standard Discretization Methods, Mechanical and Mathematical Analysis, project Novel finite elements— Mixed, Hybrid and Virtual Element formulations (Projectnumber: 255432295) (SCHR 570/23-2). I would also like to thank Nils Viebahn for helpful discussions and his help with the manuscript and Sascha Maassen and Rainer Niekamp for the implementation of the \(H^{-1}\)procedure and accompanying discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Schröder .

Editor information

Editors and Affiliations

A Sobolev and Hilbert Spaces

A Sobolev and Hilbert Spaces

In the following we will use the Sobolev and Hilbert Spaces, they are based on the space of square integrable functions on \({\mathcal B}\):

$$\begin{aligned} L^2 ({\mathcal B}) = \big \{ u : \Vert u\Vert ^2_{L^2 ({\mathcal B})} = \int _{{\mathcal B}} |u|^2 \text {d}v < + \infty \big \} \, . \end{aligned}$$
(128)

Let \(s \ge 0\) be a real number, the standard notation for a Sobolev space is \(H^s ({\mathcal B}) \) and \(H^s (\partial {\mathcal B}) \) with the inner products and norm

$$\begin{aligned} (u, u)_{s, {\mathcal B}} \, , \quad (u, u)_{s, \partial {\mathcal B}} \quad \text {and}\quad \Vert u\Vert _{s, {\mathcal B}} \, , \quad \Vert u\Vert _{s, \partial {\mathcal B}} \, , \end{aligned}$$
(129)

respectively. For \(s = 0\) the space \(H^0 ({\mathcal B}) \) represents the Hilbert space \(L^2 ({\mathcal B}) \) of all square integrable functions, i.e.,

$$\begin{aligned} L^2 ({\mathcal B}) = H^0 ({\mathcal B}) = \{ u \in L^2 ({\mathcal B}) \} \, . \end{aligned}$$
(130)

If s is a positive integer the spaces \(H^s ({\mathcal B}) \) consist of all square integrable functions whose derivatives up to the order s are also square integrable, i.e.,

$$\begin{aligned} H^s ({\mathcal B}) = \big \{ u + \sum _{\alpha = 1}^{s} {\text {D}}^{\alpha } u \in L^2 ({\mathcal B}) \big \} \, . \end{aligned}$$
(131)

Here we shall use the semi-norms

$$\begin{aligned} |u|_{k, {\mathcal B}} := \sqrt{ \sum _{\alpha = k} | {\text {D}}^{\alpha } u |^2_{L^2 ({\mathcal B})} } , \qquad k = 0, 1, \ldots , s \, , \end{aligned}$$
(132)

and the norm

$$\begin{aligned} \Vert u\Vert _{s, {\mathcal B}} := \sqrt{ \sum _{k \le s} |u|^2_{k, {\mathcal B}} } . \end{aligned}$$
(133)

Critism: This expression for the norm does not take into account a typical length scale l of the problem, i.e., we are adding, for example, a square integrable function \( |u|^2_{L^2 ({\mathcal B})}\) and its square integrable derivative \( |u^{\prime }|^2_{L^2 ({\mathcal B})}\). Without any physically meaningful parameters these expression is hardly to interpret. This could be avoided by using the expression

$$\begin{aligned} \Vert u\Vert _{s, {\mathcal B}} := \sqrt{ \sum _{k \le s} l^{\text {d} k} \; |u|^2_{k, {\mathcal B}} } \, , \end{aligned}$$
(134)

where d characterizes the dimension of \({\mathcal B}\subset \mathbb {R}^{\text {d} }\), Boffi et al. (2013).

With \({\text {D}}^{\alpha }\) as the \(\alpha \)-st weak differential operator. Thus the often used spaces \( H^1 ({\mathcal B}) \) and \( H^1_0 ({\mathcal B}) \) are defined by

$$\begin{aligned} H^1 ({\mathcal B}) = \big \{ u + {\text {D}}^1 u \in L^2 ({\mathcal B}) \big \} \, , \end{aligned}$$
(135)

and

$$\begin{aligned} H^1_0 ({\mathcal B}) = \big \{ u \in H^1 ({\mathcal B}) \; : \; u = 0 \;\; \text {on}\;\; \partial {\mathcal B}\big \} \, . \end{aligned}$$
(136)

For completeness we introduce the spaces \( H^2 ({\mathcal B}) \) and \( H^2_0 ({\mathcal B}) \) defined by

$$\begin{aligned} H^2 ({\mathcal B}) = \big \{ u + {\text {D}}^1 u + {\text {D}}^2 u \in L^2 ({\mathcal B}) \big \} \, , \end{aligned}$$
(137)

and

$$\begin{aligned} H^2_0 ({\mathcal B}) = \big \{ u \in H^2 ({\mathcal B}) \; : \; u = 0 \;\;\text {and} \;\; \dfrac{\partial u}{\partial n} = 0 \;\;\text {on}\;\; \partial {\mathcal B}_u \big \} \, . \end{aligned}$$
(138)

For negative superscripts, i.e., \(H^{-s} ({\mathcal B}) \) with \( s > 0\), the spaces are identified with the duals of \(H^{s}_0 ({\mathcal B}) \):

$$\begin{aligned} H^{-s} ({\mathcal B}) = (H^{s}_0 ({\mathcal B}))^{\prime } \, . \end{aligned}$$
(139)

For example, the norm associated to \(H^{-1} ({\mathcal B}) \), which is the dual of \(H^{1}_0 ({\mathcal B}) \), is defined as

$$\begin{aligned} \Vert u\Vert _{-1, {\mathcal B}} = \underset{v \in H^1_0 ({\mathcal B}) \setminus 0}{\text {min}} \dfrac{ (u, v)_{0, {\mathcal B}} }{\Vert v\Vert _{1 , {\mathcal B}}} \, . \end{aligned}$$
(140)

The norm associated to \(H^{-{}^{1}\!/_{2}} (\partial {\mathcal B}) \), the dual of \(H^{{}^{1}\!/_{2}}_0 (\partial {\mathcal B}) \), is defined as

$$\begin{aligned} \Vert u\Vert _{-{}^{1}\!/_{2}, \partial {\mathcal B}, 0} = \underset{v \in H^{{}^{1}\!/_{2}} (\partial {\mathcal B}) \setminus 0}{\text {min}} \dfrac{ (u, v) }{\Vert v\Vert _{{}^{1}\!/_{2}, \partial {\mathcal B}}} \, . \end{aligned}$$
(141)

The Hilbert space \(H_0^{m} ({\mathcal B}) \) is a closed subspace of \(H^{m} ({\mathcal B}) \); furthermore is \(H_0^{0} ({\mathcal B}) = L_{2} ({\mathcal B}) \).

$$\begin{aligned} \begin{array}{ccccccccccc} \ldots &{} H^{-2} ({\mathcal B}) &{} \supseteq &{} H^{-1} ({\mathcal B}) &{} \supseteq &{} L_{2} ({\mathcal B}) &{} \supseteq &{} H^{1}_0 ({\mathcal B}) &{} \supseteq &{} H^{2}_0 ({\mathcal B}) &{} \ldots \\ \ldots &{} \Vert u\Vert _{-2, {\mathcal B}} &{} \le &{} \Vert u\Vert _{-1, {\mathcal B}} &{} \le &{} \Vert u\Vert _{0, {\mathcal B}} &{} \le &{} \Vert u\Vert _{1, {\mathcal B}} &{} \le &{} \Vert u\Vert _{2, {\mathcal B}} &{} \ldots \end{array} \end{aligned}$$
(142)

For tensorial Sobolev spaces, e.g., the three-dimensional tensor product space

$$\begin{aligned} H^{s} ({\mathcal B}) \times H^{s} ({\mathcal B}) \times H^{s} ({\mathcal B}) \end{aligned}$$
(143)

we use the abbreviation

$$\begin{aligned}{}[H^{s} ({\mathcal B})]^3 = \prod _{i = 1}^{3} H^{s} ({\mathcal B}) \qquad \text {and analogously}\qquad [L^2 ({\mathcal B})]^3 = \prod _{i = 1}^{3} L^2 ({\mathcal B}) \, . \end{aligned}$$
(144)

Let \({{\varvec{u}}}\in \mathbb {R}^3\) and set the Hilbert space

$$\begin{aligned} H (\text {div}; {\mathcal B}) = \big \{ {{\varvec{u}}}\in [L^2 ({\mathcal B})]^3 \; : \; {\text {div}}{{{\varvec{v}}}} \in L^2 ({\mathcal B}) \big \} \, , \end{aligned}$$
(145)

with the associated norm

$$\begin{aligned} \Vert {{\varvec{v}}}\Vert _{H(\text {div}; {\mathcal B})} = \big \{ \Vert {{\varvec{v}}}\Vert ^2 + |{\text {div}}{{{\varvec{v}}}}|^2 \big \}^{{}^{1}\!/_{2}} \, . \end{aligned}$$
(146)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schröder, J. (2020). Engineering Notes on Concepts of the Finite Element Method for Elliptic Problems. In: Schröder, J., de Mattos Pimenta, P. (eds) Novel Finite Element Technologies for Solids and Structures. CISM International Centre for Mechanical Sciences, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-030-33520-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33520-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33519-9

  • Online ISBN: 978-3-030-33520-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics