Skip to main content

A Multi-sensor Based Physical Condition Estimator for Home Healthcare

  • Conference paper
  • First Online:
Advances on Broad-Band Wireless Computing, Communication and Applications (BWCCA 2019)

Abstract

According to the WHO(World Health Organization) and UNSD(United Nations Statistics Division) definition, when the percentage of elderly people (65 years of age or older) in the population exceeds 7%, it becomes an “aging society”, if it exceeds 14%, it becomes an “aged society”, and if it exceeds 21%, it becomes a “super-aged society”. Some developed countries are becoming super-aged societies. In a super-aged society, there are various problems in medical services for health management. To solve these problems, it is desirable for all generations, including the elderly, to take the initiative to maintain their own health. In this paper, we propose a system aimed at every one of them actively managing their health. The system always monitors and accumulates the biological information of the subject using various contact or non-contact sensors. By analyzing these data in an integrated manner, the subject can easily recognize changes in the physical condition. And also, it promotes the provision of information to remote healthcare professionals when people receive healthcare at home.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haramaki, T., Yatsuda, A., Nishino, H.: A robot assistant in an edge-computing-based safe driving support system. In: Proceedings of the 21st International Conference on NBiS 2018, pp. 144–155 (2018)

    Google Scholar 

  2. Okazaki, S., Haramaki, T., Nishino, H.: A safe driving support method using olfactory stimuli. In: Proceedings of the 12th International Conference on CISIS 2018, pp. 958–967 (2018)

    Google Scholar 

  3. Haramaki, T., Nishino, H.: An improved safe driving training system based on learning of driving behaviors. In: Proceedings of IEEE International Conference on 2019 ICCE-TW (2019)

    Google Scholar 

  4. Gao, N., Shao, W., Salim, F.D.: Predicting personality traits from physical activity intensity. Int. J. IEEE Comput. 52(7), 47–56 (2019)

    Article  Google Scholar 

  5. Lowe, S.A., Ólaighin, G.: Monitoring human health behaviour in one’s living environment: a technological review. Int. J. Elsevier Med. Eng. Phys. 36(2), 147–168 (2014)

    Article  Google Scholar 

  6. Arshad, A., Khan, S., Alam, A.Z., Ahmad, F.I., Tasnim, R.: A study on health monitoring system: recent advancements. IIUM Eng. J. 15(2), 87–99 (2014)

    Article  Google Scholar 

  7. Mshali, H., Lemlouma, T., Moloney, M., Magoni, D.: A survey on health monitoring systems for health smart homes. Int. J. Ind. Ergonomics 66, 26–56 (2018)

    Article  Google Scholar 

  8. Chaaraoui, A.A., Padilla-López, J.R., Ferrández-Pastor, F.J., Nieto-Hidalgo, M., Flórez-Revuelta, F.: A vision-based system for intelligent monitoring: human behaviour analysis and privacy by context. Sensors 14(5), 8895–8925 (2014). (Basel, Switzerland)

    Article  Google Scholar 

  9. Dias, D., Paulo Silva Cunha, J.: Wearable health devices-vital sign monitoring, systems and technologies. Sensors 18(8), 2414 (2018). (Basel, Switzerland)

    Article  Google Scholar 

  10. Majumder, S., Mondal, T., Deen, M.J.: Wearable sensors for remote health monitoring. Sensors 17(1), 130 (2017)

    Article  Google Scholar 

  11. Abuella, H., Ekin, S.: Wireless vital signs monitoring system using visible light sensing (VLS). Signal Processing (arXiv.org), arXiv:1807.05408v1 (2018)

  12. Li, Y., Lu, W., He, Y., Dang, J., Chen, S.: Chewing monitoring with bone-conduction microphone for body area network. IEEE Access 10, 1109 (2019)

    Google Scholar 

  13. Kakria, P., Tripathi, N.K., Kitipawang, P.: A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors. Int. J. Telemed. Appl. 2015(373474) (2015)

    Article  Google Scholar 

  14. Malasinghe, L.P., Ramzan, N., Dahal, K.: Remote patient monitoring: a comprehensive study. J. Ambient Intell. Humanized Comput. 10(1), 57–76 (2019)

    Article  Google Scholar 

  15. Ha, M., Lima, S., Ko, H.: Wearable and flexible sensors for user-interactive health-monitoring devices. J. Mater. Chem. B R. Soc. Chem. 2018(6), 4043–4064 (2018)

    Article  Google Scholar 

  16. Tamura, T., Huang, M., Togawa, T.: Current developments in wearable thermometers. J. Adv. Biomed. Eng. 2018(7), 88–99 (2018)

    Article  Google Scholar 

  17. Wang, K., Gill, P., Wolstenholme, J., Price, C.P., Heneghan, C., Thompson, M., Plüddemann, A.: Non-contact infrared thermometers for measuring temperature in children: primary care diagnostic technology update. Br. J. Gen. Pract.: J. R. College Gen. Pract. 64(627), e681–e683 (2014)

    Article  Google Scholar 

  18. Al-Hamry, A., Panzardi, E., Mugnaini, M., Kanoun, O.: Health monitoring of human breathing by graphene oxide based sensors. In: Proceedings of the 19th ITG/GMA-Symposium, Sensors and Measuring Systems (2018)

    Google Scholar 

  19. Adib, F., Mao, H., Kabelac, Z., Katabi, D., Miller, R.C.: Smart homes that monitor breathing and heart rate. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 837–846 (2015)

    Google Scholar 

  20. Güntner, A.T., Abegg, S., Königstein, K., Gerber, P.A., Schmidt-Trucksäss, A., Pratsinis, S.E.: Breath sensors for health monitoring. J. ACS Sens. 4, 268–280 (2019)

    Article  Google Scholar 

  21. Khan, U.M., Kabir, Z., Hassan, S.A.: Wireless health monitoring using passive wifi sensing. Computer Science (arXiv.org) arXiv:1704.00620v1 (2017)

  22. Bygholm, A., Kanstrup, A.M.: The living challenge of ambient assisted living - a literature review. In: Proceedings of the 13th Scandinavian Conference on Health Informatics, pp. 89–92 (2015)

    Google Scholar 

  23. Nawaz, T., Rinner, B., Ferryman, J.: User-centric, embedded vision-based human monitoring: a concept and a healthcare use case. In: Proceedings of the 10th International Conference on Distributed Smart Cameras (2016)

    Google Scholar 

  24. Lloret, J., Canovas, A., Sendra, S., Parra, L.: A smart communication architecture for ambient assisted living. IEEE Commun. Mag. 53(1), 26–33 (2015)

    Article  Google Scholar 

  25. Almeida, A., Mulero, R., Ramett, P., Urošević, V., Andrić, M., Patrono, L.: A critical analysis of an IoT - aware AAL system for elderly monitoring. J. Future Gener. Comput. Syst. 97, 598–619 (2019)

    Article  Google Scholar 

  26. Shulman, H.B., D’Angelo, V.D., Harrison, L., Smith, R.A., Warner, L.: The pregnancy risk assessment monitoring system (PRAMS): overview of design and methodology. Am. J. Public Health 108(10), 1305–1313 (2018)

    Article  Google Scholar 

  27. Polsky, S., Garcetti, R.: CGM, pregnancy, and remote monitoring. J. Diab. Technol. Ther. 19(3), S49–S59 (2017)

    Article  Google Scholar 

  28. Wang, Q., Yang, W., Li, L., Yan, G., Wang, H., Li, J.: Late pregnancy analysis with Yunban’s remote fetal monitoring system. Int. J. Distrib. Sens. Netw. 15(3), 1–7 (2019)

    Google Scholar 

  29. El Murabet, A., Abtoy, A., Touhafi, A., Tahiri, A.: Ambient assisted living system’s models and architectures: a survey of the state of the art. J. King Saud Univ. – Comput. Inf. Sci. (2018)

    Google Scholar 

  30. Julia, O.H., Schomakers, E.M., Ziefle, M.: Bare necessities? How the need for care modulates the acceptance of ambient assisted living technologies. Int. J. Med. Inf. 127, 147–156 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Haramaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haramaki, T., Nishino, H. (2020). A Multi-sensor Based Physical Condition Estimator for Home Healthcare. In: Barolli, L., Hellinckx, P., Enokido, T. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2019. Lecture Notes in Networks and Systems, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-030-33506-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33506-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33505-2

  • Online ISBN: 978-3-030-33506-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics