Skip to main content

Toward Quantum Photonic Computers; Thinking May Not Be Realized by Digital Computers

  • Conference paper
  • First Online:
High-Performance Computing and Big Data Analysis (TopHPC 2019)

Abstract

Experts at the forefront of Artificial Intelligence (AI) have dreamed for more than half a century of autonomous thinking machines. But there’s no hope that scientists can develop digital machines, capable of thinking process. They will never replace human mind in thinking. Simply we, ourselves are not logic machines. “I’m not a robot”! Human being have an intuitive intelligence cognition and consciousness that reasoning digital machines can not match. We should abandon some dogmas both in physics and computer technology. “Duality” in physics and “Digital Hardware” for High Performance Computing (HPC), both have failed when being applied in this area, no matter how many billions of dollars, world governments, invest in them. In this paper, at first, basic features for possible realization of thinking HPC machine using Quantum Optical Computer (QOC) versus classical digital computer will be discussed. Then we’ll propose quantum optical processors work according to Quantum Photonic (QP) treatment which is based on corpuscular nature of light. Photons refraction phenomenon when travel through the interface between two different transparent solids will be simulated according to QP. Results, follow successfully from experimental measurements. If photons, as signal carriers in QOC be tracked by controlling Short Range Interatomic Forces (SRIF) in solids, then realization of QP computers (QPC), will be possible. It means QPC or QOC, will be accessible for HPC. Since QPC behaves in physics principle, more similarly to human brain in comparison with classical digital computers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lioyd, S.: Quantum mechanical computers. Sci. Am. 273, 44–50 (1995)

    Google Scholar 

  2. Kaatuzian, H.: Theory and Technology of Semiconductor Devices, 2nd edn. Amirkabir University Press, Tehran (2016). (In Persian)

    Google Scholar 

  3. Dreyfus, H., Dreyfus, S.: Why computers may never think like people. MIT Technol. Rev. 89, 20–42 (1986)

    Google Scholar 

  4. Benioff, P.: Quantum mechanical models of turing machines that dissipate no energy. Phys. Rev. Lett. 48(23), 1581–1585 (1982)

    Article  MathSciNet  Google Scholar 

  5. Stick, D., Sterk, J.D., Monroe, C.: The trap technique toward a chip-based quantum computer. IEEE Spectr. 44, 30–37 (2007)

    Article  Google Scholar 

  6. Vandersypen, L.: Dot-to-dot design. IEEE Spectr. 44, 33–39 (2007)

    Article  Google Scholar 

  7. Albert, D.Z.: Bohm’s alternative to quantum mechanics. Sci. Am. 270, 32–39 (1994)

    Article  Google Scholar 

  8. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables, I, II. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Google Scholar 

  9. Kaatuzian, H.: Quantum Photonics, A Theory for Attosecond Optics. Amirkabir University Press, Tehran (2012)

    Google Scholar 

  10. Kaatuzian, H.: Pars-1 robot. Daneshmand Iran. Sci. Tech. Mag. 24, 69–72 (1986) (1987)

    Google Scholar 

  11. Short, K.L.: Microprocessors and Programmed Logic. Prentice-Hall Inc., Upper Saddle River (1981)

    Google Scholar 

  12. Koch, C., Tononi, G.: Can machines be conscious? IEEE Spectr. 45, 47–51 (2008)

    Article  Google Scholar 

  13. Horgan, J.: The consciousness conundrum. IEEE Spectr. 45, 28–34 (2008)

    Article  Google Scholar 

  14. Goertzel, B., Mossbridge, J., Monroe, E., Hanson, D., Yu, G.: Loving AI: humanoid robots as agent of human consciousness expansion. arXiv: 1709.07791v1 [cs.AI], 22 September 2017

    Google Scholar 

  15. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser, S. (ed.) 35th Annual Symposium on Foundations of Computer Science Proceedings. IEEE Computer Society Press, ‎Washington, DC (1994)

    Google Scholar 

  16. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)

    Article  Google Scholar 

  17. Savage, N.: Linking with light. IEEE Spectr. 39, 32–36 (2002)

    Article  Google Scholar 

  18. Kaatuzian, H., Chaharmir, M., Majedi, A.H.: Design and development of optical spatial Vander Lugt filters. In: ICEE-97, 7–9 May, Tehran, Iran. Sharif University of Technology (1997)

    Google Scholar 

  19. Mok, F.H.: Angle-multiplex storage of 5000 holograms in lithium niobate. Opt. Lett. 18(11), 915–917 (1993)

    Article  Google Scholar 

  20. Hong, J.H., Mcmichael, I., Chang, T.Y., Christian, W., Paek, E.G.: Volume holographic memory systems: techniques and architecture. Opt. Eng. 34(8), 2193–2203 (1995)

    Article  Google Scholar 

  21. Psaltis, D.: Holographic memories. Sci. Am. 273, 52–58 (1995)

    Article  Google Scholar 

  22. Kaatuzian, H.: Photonics, vol. 2. 4th printing, Amirkabir University Press, Tehran (2018). (in Persian)

    Google Scholar 

  23. Yariv, A.: Quantum Electronics. Wiley, Hoboken (1989)

    Google Scholar 

  24. Phillips, D.F., Fleischhauer, A., Mair, A., Walsworth, R.L., Lukin, M.D.: Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)

    Article  Google Scholar 

  25. Kaatuzian, H., Rostami, A., Ajdarzadeh, O.A.: Analysis of quantum light memory in atomic systems. J. Opt. B: Quantum Semiclassical opt. 7, 157–167 (2005)

    Article  Google Scholar 

  26. Liu, C., Dutton, Z., Behroozi, C., Hau, L.V.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490 (2001)

    Article  Google Scholar 

  27. Kaatuzian, H., Shokri Kojori, H., Zandi, A., Ataei, M.: Analysis of quantum well size alteration effects on slow light device based on excitonic population oscillation. Opt. Quantum Electron. 45(6), 947–959 (2013)

    Article  Google Scholar 

  28. Kohandani, R., Kaatuzian, H.: Theoretical analysis of multiple quantum well slow light Devices under applied external fields using a fully analytical model in fractional dimensions. Quantum Electron. 45(1), 89–94 (2015)

    Article  Google Scholar 

  29. Abdolhosseini, S., Kohandani, R., Kaatuzian, H.: Analysis and investigation of temperature and hydrostatic pressure effects on optical characteristics of multiple quantum well slow light devices. Appl. Opt. 56(26), 7331–7340 (2017)

    Article  Google Scholar 

  30. Choupanzadeh, B., Kaatuzian, H., Kohandani, R.: Analysis of the influence of geometrical dimensions and external magnetic field on optical properties o InGaAs/GaAs quantum-dot slow light devices. Quantum Electron. 48(6), 582–588 (2018)

    Article  Google Scholar 

  31. Son, J.Y.: 3D displays. IEEE LEOS Newslett. 18, 13–14 (2004)

    Google Scholar 

  32. Sullivan, A.: 3-deep. IEEE Spectr. 42, 22–27 (2005)

    Article  Google Scholar 

  33. Durr, D., Goldstein, S., Zanghi, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67(5), 843–908 (1992)

    Article  MathSciNet  Google Scholar 

  34. Zorpette, G.: The quest for the spin transistor. IEEE Spectr. 38, 30–35 (2001)

    Article  Google Scholar 

  35. Svoboda, E.: Fresh spin on logic. MIT spintronics microprocessors. IEEE Spectr. 44, 15 (2007)

    Article  Google Scholar 

  36. Bohm, D.: Quantum Theory. Dover 1951, Reprint Prentice Hall (1989)

    Google Scholar 

  37. Bohm, D.: Causality and Chance in Modern Physics 1957, 1961, Reprinted by University of Pensylvania Press (1980)

    Google Scholar 

  38. Kaatuzian, H.: Quantum Photonics, an authentic concept for attosecond optics. J. Laser Opt. Photon. 4(Suppl. 2), 65 (2017)

    Google Scholar 

  39. Kaatuzian, H., Wahedy Zarch, A.A., Ajdarzadeh Oskouei, A., Amjadi, A.: Simulation and estimation of normal dispersion phenomenon in an acentric organic crystal (NPP) by the quantum photonic approach. In: Modelling and simulation in materials science and engineering, vol. 15, no. 8, pp. 869–878. IOP Publisher, December 2007

    Article  Google Scholar 

  40. Wahedy Zarch, A.A., Kaatuzian, H., Amjadi, A.: A semiclassical approach for the phase matching effect in the nonlinear optical phenomena. J. Opt.: Pure Appl. Opt. 10(12), 125102 (2008)

    Google Scholar 

  41. Wahedy Zarch, A.A., Kaatuzian, H., Amjadi, A., Ajdarzadeh, O.A.: A semi-classical approach for electrooptic effect. Opt. Commun. 281, 4033–4037 (2008)

    Article  Google Scholar 

  42. Kaatuzian, H., Adibi, A.: Photonic interpretation of refractive index. In: SPIE Proceedings, vol. 2778, ICO-17, Taejon, Korea (1996)

    Google Scholar 

  43. Brooks, R.: I Rodney Brooks am a robot. IEEE Spectr. 45, 63–67 (2008)

    Article  Google Scholar 

  44. Kaatuzian, H.: Photonic interpretation of Refraction, Polarization, Dispersion… in submicron scales. Ph.D. dissertation in Electrical Engineering Department of Amirkabir University of Technology, July 1994

    Google Scholar 

  45. Fromhold, A.T.: Quantum Mechanics for Applied Physics and Engineering. Academic Press, Cambridge (1981)

    Google Scholar 

  46. Kaatuzian, H., Bazhdanzadeh, N., Ghohroodi Ghamsarim, B.: Microscopic analysis for normal dispersion based on quantum photonics treatment. In: CSIMTA 2004, Cherbourg, France (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Kaatuzian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaatuzian, H. (2019). Toward Quantum Photonic Computers; Thinking May Not Be Realized by Digital Computers. In: Grandinetti, L., Mirtaheri, S., Shahbazian, R. (eds) High-Performance Computing and Big Data Analysis. TopHPC 2019. Communications in Computer and Information Science, vol 891. Springer, Cham. https://doi.org/10.1007/978-3-030-33495-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33495-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33494-9

  • Online ISBN: 978-3-030-33495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics