Skip to main content

Representing Unequal Data Series in Vector Space with Its Application in Bank Customer Clustering

  • Conference paper
  • First Online:
High-Performance Computing and Big Data Analysis (TopHPC 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 891))

  • 660 Accesses

Abstract

Data Series are one of the major types of data producing in different domains. Performing data analysis on this domain currently have two obstacles. The big volume of data and also the large dimensionality and unequal size. In this research we have employed two famous methods from NLP algorithms named Word2Vec and Doc2Vec to represent and compress data series at the same time. These two approaches are based on Feed Forward Neural Networks. We have used a private bank dataset with more than 11 million transactions and converted it to data series. Then we employed two representation methods to convert each time series to a fix size [1 × 100] vector. The first approach ignores the order in data series and gains more than 96% compression ratio (30:1). The second method preserves order of data to some extent and gets about 24% compression ratio (1.35:1). The other advantage of proposed method is the fix size vector representation which makes the comparison of two data series with different length easily possible. The k-means clustering algorithm is performed on Bank Customer Data Series to show a usage of proposed data series representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Word2Vec Data Series Representation.

  2. 2.

    Doc2Vec Data Series Representation.

  3. 3.

    There is another version of Word2Vec in which the input is just w(t) and the goal is to predict n surrounding words. That version is called Skipped Gram.

  4. 4.

    We do not take into account non-financial transaction.

  5. 5.

    In elbow method the k-means clustering is done on different k values, when the average of minimum distance error seize to reduce as the amount of k increases the optimum value of k is obtained.

References

  1. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  2. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  3. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering–A decade review. Inf. Syst. 53, 16–38 (2015)

    Article  Google Scholar 

  4. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11. ACM (2003)

    Google Scholar 

  5. Wilson, S.J.: Data representation for time series data mining: time domain approaches. Wiley Interdiscip. Rev.: Comput. Stat. 9(1), e1392 (2017)

    Article  MathSciNet  Google Scholar 

  6. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Discov. 26(2), 275–309 (2013)

    Article  MathSciNet  Google Scholar 

  7. Keogh, E.J., Pazzani, M.J.: An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In: Kdd, vol. 98, no. 1, pp. 239–243 (1998)

    Google Scholar 

  8. Chan, K.P., Fu, W.C.: Efficient time series matching by wavelets. In: ICDE, p. 126. IEEE (1999)

    Google Scholar 

  9. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 245–250. ACM (2001)

    Google Scholar 

  10. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series, vol. 23, no. 2, pp. 419–429. ACM (1994)

    Google Scholar 

  11. Ratanamahatana, C.A., Keogh, E.: Multimedia retrieval using time series representation and relevance feedback. In: Fox, E.A., Neuhold, E.J., Premsmit, P., Wuwongse, V. (eds.) ICADL 2005. LNCS, vol. 3815, pp. 400–405. Springer, Heidelberg (2005). https://doi.org/10.1007/11599517_48

    Chapter  Google Scholar 

  12. Ratanamahatana, C., Keogh, E., Bagnall, Anthony J., Lonardi, S.: A novel bit level time series representation with implication of similarity search and clustering. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 771–777. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_90

    Chapter  Google Scholar 

  13. Izakian, H., Pedrycz, W., Jamal, I.: Fuzzy clustering of time series data using dynamic time warping distance. Eng. Appl. Artif. Intell. 39, 235–244 (2015)

    Article  Google Scholar 

  14. Truong, C.D., Anh, D.T.: A novel clustering-based method for time series motif discovery under time warping measure. Int. J. Data Sci. Anal. 4(2), 113–126 (2017)

    Article  Google Scholar 

  15. Chu, S., Keogh, E., Hart, D., Pazzani, M.: Iterative deepening dynamic time warping for time series. In: Proceedings of the 2002 SIAM International Conference on Data Mining, pp. 195–212. Society for Industrial and Applied Mathematics (2002)

    Google Scholar 

  16. Seto, S., Zhang, W., Zhou, Y.: Multivariate time series classification using dynamic time warping template selection for human activity recognition. arXiv preprint arXiv:1512.06747 (2015)

  17. Ozkan, I., Turksen, I.B.: Fuzzy longest common subsequence matching with FCM using R. arXiv preprint arXiv:1508.03671 (2015)

  18. Chen, L., Ng, R.: On the marriage of lp-norms and edit distance. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, vol. 30, pp. 792–803. VLDB Endowment (2004)

    Google Scholar 

  19. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 491–502. ACM (2005)

    Google Scholar 

  20. Möller-Levet, C.S., Klawonn, F., Cho, K.-H., Wolkenhauer, O.: Fuzzy clustering of short time-series and unevenly distributed sampling points. In: R. Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 330–340. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45231-7_31

    Chapter  Google Scholar 

  21. Latecki, L.J., Megalooikonomou, V., Wang, Q., Lakaemper, R., Ratanamahatana, C.A., Keogh, E.: Elastic partial matching of time series. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 577–584. Springer, Heidelberg (2005). https://doi.org/10.1007/11564126_60

    Chapter  Google Scholar 

  22. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In: VLDB, vol. 385, no. 394, p. 99 (2000)

    Google Scholar 

  23. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: 18th International Conference on Data Engineering, Proceedings, pp. 673–684. IEEE (2002)

    Google Scholar 

  24. Liao, T.W.: Clustering of time series data—a survey. Pattern Recognit. 38(11), 1857–1874 (2005)

    Article  Google Scholar 

  25. Keogh, E.J., Pazzani, M.J.: A simple dimensionality reduction technique for fast similarity search in large time series databases. In: Terano, T., Liu, H., Chen, A.L.P. (eds.) PAKDD 2000. LNCS (LNAI), vol. 1805, pp. 122–133. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45571-X_14

    Chapter  Google Scholar 

  26. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Locally adaptive dimensionality reduction for indexing large time series databases. ACM Sigmod Rec. 30(2), 151–162 (2001)

    Article  Google Scholar 

  27. Łuczak, M.: Hierarchical clustering of time series data with parametric derivative dynamic time warping. Expert Syst. Appl. 62, 116–130 (2016)

    Article  Google Scholar 

  28. Paparrizos, J., Gravano, L.: k-shape: efficient and accurate clustering of time series. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1855–1870. ACM (2015)

    Google Scholar 

  29. Niennattrakul, V., Ratanamahatana, C.A.: Inaccuracies of shape averaging method using dynamic time warping for time series data. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp. 513–520. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72584-8_68

    Chapter  Google Scholar 

  30. Sheng, W., Liu, X.: A genetic k-medoids clustering algorithm. J. Heuristics 12(6), 447–466 (2006)

    Article  Google Scholar 

  31. Tran, D., Wagner, M.: Fuzzy C-Means clustering-based speaker verification. In: Pal, N.R., Sugeno, M. (eds.) AFSS 2002. LNCS (LNAI), vol. 2275, pp. 318–324. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45631-7_42

    Chapter  Google Scholar 

  32. Yin, J., Yang, Q.: Integrating hidden Markov models and spectral analysis for sensory time series clustering. In: Fifth IEEE International Conference on Data Mining, p. 8. IEEE (2005)

    Google Scholar 

  33. De Brébisson, A., Simon, É., Auvolat, A., Vincent, P., Bengio, Y.: Artificial neural networks applied to taxi destination prediction. arXiv preprint arXiv:1508.00021 (2015)

  34. Busta, M., Neumann, L., Matas, J.: FASText: efficient unconstrained scene text detector. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1206–1214 (2015)

    Google Scholar 

  35. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohreh Tabatabayi Seifi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tabatabayi Seifi, S., Ekhveh, A.A. (2019). Representing Unequal Data Series in Vector Space with Its Application in Bank Customer Clustering. In: Grandinetti, L., Mirtaheri, S., Shahbazian, R. (eds) High-Performance Computing and Big Data Analysis. TopHPC 2019. Communications in Computer and Information Science, vol 891. Springer, Cham. https://doi.org/10.1007/978-3-030-33495-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33495-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33494-9

  • Online ISBN: 978-3-030-33495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics