Skip to main content

New Class of Non-binary Pseudorandom Number Generators

  • Conference paper
  • First Online:
Advanced Technologies in Robotics and Intelligent Systems

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 80))

Abstract

Pseudo-Random Number Generators (PRNG) has a wide range of applications. PRNG are the most important elements of any information security system. Scope of their application is very wide: in range from key information generation to entering unpredictability into the functioning of protection means and objects. The most interesting classes of PRNG are Linear Feedback Shift Registers (LFSR) and Non-Linear Shift Registers (NLFSR). New class of sequences are formed by NLFSR with structure determined by characteristic polynomials of particular form are considered in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osmolovskij, S.A.: Stohasticheskie metody peredachi dannyh. Radio i svyaz’ (1991)

    Google Scholar 

  2. Osmolovskij, S.A.: Stohasticheskie metody zashchity informacii. Radio i svyaz’ (2003)

    Google Scholar 

  3. Bellare, M., Goldwasser, S., Micciancio, D.: Pseudo-random number generation within cryptographic algorithms: the DDS case, in CRYPTO, vol. 1294. Lecture Notes in Computer Science, Springer, pp. 277–291

    Google Scholar 

  4. Ivanov, M.A., Chugunkov, I.V., Macuk, N.A., et al.: Stohasticheskie metodi i sredstva zaschiti informacii v kompyuternih sistemah i setyah. Kudic-Press (2009)

    Google Scholar 

  5. Gill, A.: Linear Sequential Machines [Russian translation]. Nauka, Moscow (1974)

    Google Scholar 

  6. Kuznecov, V.M., Pesoshin, V.A.: Generatori ravnoveroyatnostnih psevdosluchainih posledovatelnostei na registrah sdviga. Izvestiya visshih uchebnih zavedenii. Povoljskii region. Tehnicheskie nauki 1, 21–28 (2012)

    Google Scholar 

  7. Kuznecov, V.M., Pesoshin, V.A.: Generatori sluchainih i psevdosluchainih posledovatelnostei na cifrovih elementah zaderjki. Kazan, Izd-vo Kazanskogo gos. tehn. un-ta (2013)

    Google Scholar 

  8. Kuznecov, V.M., Pesoshin, V.A., Shirshova, D.V.: Generators of the equiprobable pseudorandom nonmaximal-length sequences based on linear-feedback shift registers. Autom. Remote Control 77(9), 1622–1632 (2016)

    Article  MathSciNet  Google Scholar 

  9. Kuznecov, V.M., Pesoshin, V.A.: Generatory psevdosluchajnyh i sluchajnyh chisel na registrah sdviga. Kazan National Research Technological University (2007)

    Google Scholar 

  10. Dubrova, E.: An equivalence preserving transformation from the Fibonacci to the Galois NLFSRs. CoRR (2008). http://arxiv.org/abs/0801.4079

  11. Dubrova, E.: A list of maximum period NLFSRs. Cryptology ePrint archive. Report 2012/166 (2012). http://eprint.iacr.org/2012/166

  12. Dubrova, E.: A scalable method for constructing Galois NLFSRs with period 2n − 1 using cross-join pairs. Cryptology ePrint archive. Report 2011/632 (2011). http://eprint.iacr.org/2011/632

  13. Chabloz, J.-M., Mansouri, S., Dubrova, E.: An algorithm for constructing a fastest Galois NLFSR generating a given sequence. In: Carlet, C., Pott, A. (eds.) Sequences and Their Applications—SETA 2010, vol. 6338. Lecture Notes in Computer Science, Springer Berlin, Heidelberg, pp. 41–54 (2010)

    Google Scholar 

  14. Dubrova, E.: A method for generating full cycles by a composition of NLFSRs. https://eprint.iacr.org/2012/492.pdf

  15. Dubrova, E., Teslenko, M., Tenhunen, H.: On analysis and synthesis of (n, k)-non-linear feedback shift registers. Design and Test in Europe, pp. 133–137 (2008)

    Google Scholar 

  16. Dubrova, E.: An equivalence-preserving transformation of shift registers. https://eprint.iacr.org/2014/051.pdf

  17. Ivanov, M.A., Roslyj, E.B., Starikovskij, A.V., et al.: Non-binary pseudorandom number generators for information security purposes. Proc. Comput. Sci. 123, 203–211 (2018)

    Article  Google Scholar 

  18. Chakraborty, R.S.: Hardware security through design obfuscation, Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Thesis Adviser: Dr. Swarup Bhunia. Department of Electrical Engineering and Computer Science. Case Western Reserve University, May 2010

    Google Scholar 

  19. Becker, G.T., Fyrbiak, M., Kison, C.: Hardware obfuscation. Springer (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanov, M.A., Kliuchnikova, B.V., Salikov, E.A., Starikovskii, A.V. (2020). New Class of Non-binary Pseudorandom Number Generators. In: Misyurin, S., Arakelian, V., Avetisyan, A. (eds) Advanced Technologies in Robotics and Intelligent Systems. Mechanisms and Machine Science, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-030-33491-8_35

Download citation

Publish with us

Policies and ethics