Skip to main content

Nature Knows Better

  • Chapter
  • First Online:
Solving Problems in Thermal Engineering

Part of the book series: Power Systems ((POWSYS))

  • 626 Accesses

Abstract

This chapter focuses on the experimental background of extended constitutive equations, especially on non-Fourier heat conduction. Although these phenomena are not common in engineering practice nowadays, it conveys essential aspects and provides guidance for ‘special’ thermal and coupled problems. It is anticipated that the advanced material models will appear in the commercial codes as the thermal modeling of micro and nano-scaled objects become increasingly important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since the heat flux \(\mathbf q\) becomes a state variable in the generalized equations, independently of the approach, it is worth to mention the possible \(\mathbf q\)-dependence of the material parameters.

  2. 2.

    We refer to it as ‘temperature representation’. If the temperature is eliminated, then it is called ‘heat flux representation’.

  3. 3.

    Naturally, the scaling property appears in large scales, too, but it is less frequent in the practical applications and may be important merely for geological applications.

  4. 4.

    Assuming adiabatic boundary conditions on both sides with non-uniform initial condition to model the initial (and quick) absorption of the heat pulse.

  5. 5.

    As a philosophical question to the Reader: is it possible to interpret the internal variable as a measure of deformation to obtain a hyperbolic heat equation?

  6. 6.

    Recall the Fourier resonance condition!

  7. 7.

    We note here the difference between the apparent and theoretical (calculated) material parameters. It has great importance in some scaling properties that will be discussed at the end of this chapter.

  8. 8.

    In some papers, the MCV equation is considered to be thermodynamically incompatible. In general, this interpretation depends on the space of state variables: one must include the heat flux as an independent variable, then the anomalies around the entropy production disappear.

  9. 9.

    Analogously to the GK equation, it can be interpreted as a nonlocal term.

  10. 10.

    The deformedness in a 1D case is defined as \( D=\ln (l/l_r)\) with \(l_r\) being a relaxed length, characterizing the unloaded state of the material. This is an appropriate thermodynamic state variable. The engineering strain is \(\varepsilon =(l-l_0)/l_0\) in which \(l_0\) is the length at the initial time instant. Since \(\varepsilon \) is a reference time dependent, it is not a good thermodynamic state variable [293]. Unfortunately, D is not directly measurable.

References

  1. J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113(4), 1046 (1959)

    Article  MATH  Google Scholar 

  2. Gy. Gróf, Notes on using temperature-dependent thermal diffusivity–forgotten rules. J. Therm. Anal. Calorim. 132(2), 1389–1397 (2018)

    Google Scholar 

  3. S. Both, B. Czél, T. Fülöp, Gy. Gróf, Á. Gyenis, R. Kovács, P. Ván, J. Verhás, Deviation from the Fourier law in room-temperature heat pulse experiments. J. Non-Equilib. Thermodyn. 41(1), 41–48 (2016)

    Google Scholar 

  4. P. Ván, A. Berezovski, T. Fülöp, Gy. Gróf, R. Kovács, Á. Lovas, J. Verhás, Guyer-Krumhansl-type heat conduction at room temperature. EPL, 118(5), 50005 (2017), arXiv:1704.00341v1

    Article  Google Scholar 

  5. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)

    Article  Google Scholar 

  6. H.M. James, Some extensions of the flash method of measuring thermal diffusivity. J. Appl. Phys. 51(9), 4666–4672 (1980)

    Article  Google Scholar 

  7. Gy.I. Gróf, Homogén és kétrétegű minták hőmérsékletvezetési tényezőjének mérése flash módszerrel (2002)

    Google Scholar 

  8. T. Fülöp, R. Kovács,Á Lovas, Á. Rieth, T. Fodor, M. Szücs, P. Ván, Gy. Gróf, Emergence of non-Fourier hierarchies. Entropy 20(11), 832 (2018), ArXiv: 1808.06858

    Article  Google Scholar 

  9. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (1959)

    Google Scholar 

  10. S.J. Farlow, Partial Differential Equations for Scientists and Engineers (Courier Corporation, 1993)

    Google Scholar 

  11. M. Necati Ozisik, Heat Conduction (Wiley, New York, 1993)

    Google Scholar 

  12. K.V. Zhukovsky, Exact solution of Guyer-Krumhansl type heat equation by operational method. Int. J. Heat Mass Transf. 96, 132–144 (2016)

    Article  Google Scholar 

  13. K.V. Zhukovsky, Operational approach and solutions of hyperbolic heat conduction equations. Axioms 5(4), 28 (2016)

    Article  Google Scholar 

  14. K.V. Zhukovsky, H.M. Srivastava, Analytical solutions for heat diffusion beyond Fourier law. Appl. Math. Comput. 293, 423–437 (2017)

    MathSciNet  MATH  Google Scholar 

  15. K. Zhukovsky, Violation of the maximum principle and negative solutions for pulse propagation in Guyer-Krumhansl model. Int. J. Heat Mass Transf. 98, 523–529 (2016)

    Article  Google Scholar 

  16. R. Kovács, Analytic solution of Guyer-Krumhansl equation for laser flash experiments. Int. J. Heat Mass Transf. 127, 631–636 (2018)

    Article  Google Scholar 

  17. R. Kovács, P. Ván, Thermodynamical consistency of the Dual Phase Lag heat conduction equation. Contin. Mech. Thermodyn. 1–8 (2017)

    Google Scholar 

  18. L. Tisza, Transport phenomena in Helium II. Nature 141, 913 (1938)

    Article  Google Scholar 

  19. L. Landau, Two-fluid model of liquid Helium II. J. Phys. USSR 5, 71 (1941)

    Google Scholar 

  20. L. Tisza, The theory of liquid Helium. Phys. Rev. 72(9), 838–877 (1947)

    Article  Google Scholar 

  21. L. Landau, On the theory of superfluidity of Helium II. J. Phys. 11(1), 91–92 (1947)

    MathSciNet  Google Scholar 

  22. S. Balibar, Laszlo Tisza and the two-fluid model of superfluidity. Comptes Rendus Phys. 18(9–10), 586–591 (2017)

    Article  Google Scholar 

  23. V. Peshkov, Second sound in Helium II. J. Phys. (Moscow) 381(8) (1944)

    Google Scholar 

  24. P.L. Kapitza, Heat transfer and superfluidity of helium II. Phys. Rev. 60(4), 354 (1941)

    Article  Google Scholar 

  25. F. London, Superfluids, Structure of Matter Series (Wiley, New York, 1954)

    MATH  Google Scholar 

  26. R.J. Donnelly, The two-fluid theory and second sound in liquid Helium. Phys. Today 62(10), 34–39 (2009)

    Article  Google Scholar 

  27. P.C. Hohenberg, P.C. Martin, Microscopic theory of superfluid helium. Ann. Phys. 34(2), 291–359 (1965)

    Article  Google Scholar 

  28. P.W. Anderson, Considerations on the flow of superfluid helium. Rev. Mod. Phys. 38(2), 298 (1966)

    Article  Google Scholar 

  29. S. J. Putterman. Superfluid hydrodynamics. In Amsterdam, North-Holland Publishing Co.; New York, American Elsevier Publishing Co., Inc.(North-Holland Series in Low Temperature Physics. Volume 3), 1974. 464 p., volume 3, 1974

    Google Scholar 

  30. G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Superfluid helium: visualization of quantized vortices. Nature 441(7093), 588 (2006)

    Article  Google Scholar 

  31. L. Dresner, Transient Heat Transfer in Superfluid Helium, vol. 27 (Plenum Press, New York, 1982)

    Google Scholar 

  32. L. Dresner, Transient Heat Transfer in Superfluid Helium- Part II (Springer, Berlin, 1984)

    Google Scholar 

  33. E. Kim, M.H.W. Chan, Probable observation of a supersolid helium phase. Nature 427(6971), 225 (2004)

    Article  Google Scholar 

  34. D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3 (Courier Corporation, 2013)

    Google Scholar 

  35. M.S. Mongiovi, D. Jou, M. Sciacca, Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium. Phys. Rep. (2018)

    Google Scholar 

  36. J.R. Pellam, Investigations of pulsed second sound in liquid helium II. Phys. Rev. 75(8), 1183 (1949)

    Article  Google Scholar 

  37. V. Narayanamurti, R.C. Dynes, K. Andres, Propagation of sound and second sound using heat pulses. Phys. Rev. B 11(7), 2500–2524 (1975)

    Article  Google Scholar 

  38. C.T. Lane, H. Fairbank, H. Schultz, W. Fairbank, “Second sound” in liquid Helium II. Phys. Rev. 70(5–6), 431 (1946)

    Article  Google Scholar 

  39. C.T. Lane, H.A. Fairbank, W.M. Fairbank, Second sound in liquid Helium II. Phys. Rev. 71, 600–605 (1947)

    Article  Google Scholar 

  40. R.D. Maurer, M.A. Herlin, Second sound velocity in Helium II. Phys. Rev. 76(7), 948 (1949)

    Article  Google Scholar 

  41. J.C. Ward, J. Wilks, The velocity of second sound in liquid Helium near the absolute zero. Lond. Edinb. Dublin Philos. Mag. J. Sci. 42(326), 314–316 (1951)

    Article  Google Scholar 

  42. K.R. Atkins, D.V. Osborne, The velocity of second sound below 1 K. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41(321), 1078–1081 (1950)

    Article  Google Scholar 

  43. M. Chester, Second sound in solids. Phys. Rev. 131(5), 2013–2015 (1963)

    Article  Google Scholar 

  44. R.A. Guyer, J.A. Krumhansl, Dispersion relation for second sound in solids. Phys. Rev. 133(5A), A1411 (1964)

    Article  Google Scholar 

  45. C.C. Ackerman, B. Bertman, H.A. Fairbank, R.A. Guyer, Second sound in solid Helium. Phys. Rev. Lett. 16(18), 789–791 (1966)

    Article  Google Scholar 

  46. R.J. Hardy, S.S. Jaswal, Velocity of second sound in NaF. Phys. Rev. B 3(12), 4385–4387 (1971)

    Article  Google Scholar 

  47. V. Narayanamurti, R.C. Dynes, Observation of second sound in bismuth. Phys. Rev. Lett. 28(22), 1461–1465 (1972)

    Article  Google Scholar 

  48. H.A. Fairbank, K.H. Mueller, Propagation of second sound and heat pulses in solid helium crystals, Quantum Statistical Mechanics in the Natural Sciences (Springer, Berlin, 1974), pp. 403–411

    Chapter  Google Scholar 

  49. A. Sellitto, V.A. Cimmelli, D. Jou, Mesoscopic Theories of Heat Transport in Nanosystems, vol. 6 (Springer, Berlin, 2016)

    Book  MATH  Google Scholar 

  50. Y. Guo, D. Jou, M. Wang, Macroscopic heat transport equations and heat waves in nonequilibrium states. Phys. D: Nonlinear Phenom. 342, 24–31 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. D.D. Joseph, L. Preziosi, Heat waves. Rev. Mod. Phys. 61(1), 41 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  52. D.D. Joseph, L. Preziosi, Addendum to the paper on heat waves. Rev. Mod. Phys. 62(2), 375–391 (1990)

    Article  Google Scholar 

  53. P. Ván, Theories and heat pulse experiments of non-Fourier heat conduction. Commun. Appl. Ind. Math. 7(2), 150–166 (2016)

    MathSciNet  MATH  Google Scholar 

  54. V.A. Cimmelli, Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34(4), 299–333 (2009)

    Article  MATH  Google Scholar 

  55. V.A. Cimmelli, A. Sellitto, D. Jou, Nonlocal effects and second sound in a non-equilibrium steady state. Phys. Rev. B 79(1), 014303 (2009)

    Article  Google Scholar 

  56. D. Jou, V.A. Cimmelli, Constitutive equations for heat conduction in nanosystems and non-equilibrium processes: an overview. Commun. Appl. Ind. Math. 7(2), 196–222 (2016)

    MathSciNet  MATH  Google Scholar 

  57. D. Jou, I. Carlomagno, V.A. Cimmelli, A thermodynamic model for heat transport and thermal wave propagation in graded systems. Phys. E: Low-dimens. Syst. Nanostruct. 73, 242–249 (2015)

    Article  Google Scholar 

  58. A. Sellitto, V.A. Cimmelli, D. Jou, Nonequilibrium thermodynamics and heat transport at nanoscale, Mesoscopic Theories of Heat Transport in Nanosystems (Springer International Publishing, Berlin, 2016), pp. 1–30

    Chapter  MATH  Google Scholar 

  59. I. Carlomagno, A. Sellitto, V.A. Cimmelli, Dynamical temperature and generalized heat-conduction equation. Int. J. Non-Linear Mech. 79, 76–82 (2016)

    Article  Google Scholar 

  60. G. Mascali, V. Romano, Charge transport in graphene including thermal effects. SIAM J. Appl. Math. 77(2), 593–613 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  61. H.E. Jackson, C.T. Walker, T.F. McNelly, Second sound in NaF. Phys. Rev. Lett. 25(1), 26–28 (1970)

    Article  Google Scholar 

  62. T.F. McNelly, S.J. Rogers, D.J. Channin, R.J. Rollefson, W.M. Goubau, G.E. Schmidt, J.A. Krumhansl, R.O. Pohl, Heat pulses in NaF: onset of second sound. Phys. Rev. Lett. 24(3), 100–102 (1970)

    Article  Google Scholar 

  63. H.E. Jackson, C.T. Walker, Thermal conductivity, second sound and phonon-phonon interactions in NaF. Phys. Rev. B 3(4), 1428–1439 (1971)

    Article  Google Scholar 

  64. T.F. McNelly, Second Sound and Anharmonic Processes in Isotopically Pure Alkali-Halides, Ph.D. Thesis, Cornell University (1974)

    Google Scholar 

  65. C.T. Walker, Thermal conductivity of some alkali halides containing F centers. Phys. Rev. 132(5), 1963–1975 (1963)

    Article  Google Scholar 

  66. L.P. Mezhov-Deglin, Measurement of the thermal conductivity of crystalline he4. Sov. Phys. JETP 22, 47 (1966)

    Google Scholar 

  67. P.D. Thacher, Effect of boundaries and isotopes on the thermal conductivity of LiF. Phys. Rev. 156(3), 975 (1967)

    Article  Google Scholar 

  68. S.B. Trickey, W.P. Kirk, E.D. Adams, Thermodynamic, elastic, and magnetic properties of solid helium. Rev. Mod. Phys. 44(4), 668 (1972)

    Article  Google Scholar 

  69. R.H. Crepeau, O. Heybey, D.M. Lee, S.A. Strauss, Sound propagation in hcp solid helium crystals of known orientation. Phys. Rev. A 3(3), 1162 (1971)

    Article  Google Scholar 

  70. P.V.E. McClintock, An apparatus for preparing isotopically pure he4. Cryogenics 18(4), 201–208 (1978)

    Article  Google Scholar 

  71. R.J. Von Gutfeld, Heat pulse transmission. Phys. Acoust. 5, 233 (2012)

    Article  Google Scholar 

  72. S.J. Rogers, Transport of heat and approach to second sound in some isotropically pure alkali-halide crystals. Phys. Rev. B 3(4), 1440 (1971)

    Article  Google Scholar 

  73. S.J. Rogers, Second sound in solids: the effects of collinear and non-collinear three phonon processes. Le Journal de Physique Colloques 33(4), 4–111 (1972)

    Google Scholar 

  74. W. Dreyer, H. Struchtrup, Heat pulse experiments revisited. Contin. Mech. Thermodyn. 5, 3–50 (1993)

    Article  MathSciNet  Google Scholar 

  75. K. Frischmuth, V.A. Cimmelli, Numerical reconstruction of heat pulse experiments. Int. J. Eng. Sci. 33(2), 209–215 (1995)

    Article  MATH  Google Scholar 

  76. K. Frischmuth, V.A. Cimmelli, Hyperbolic heat conduction with variable relaxation time. J. Theor. Appl. Mech. 34(1), 57–65 (1996)

    MATH  Google Scholar 

  77. K. Frischmuth, V.A. Cimmelli, Coupling in thermo-mechanical wave propagation in NaF at low temperature. Arch. Mech. 50(4), 703–713 (1998)

    MATH  Google Scholar 

  78. G. Chen, Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86(11), 2297–2300 (2001)

    Article  Google Scholar 

  79. G. Chen, Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J. Heat Transf. 124(2), 320–328 (2002)

    Article  Google Scholar 

  80. Y. Ma, A hybrid phonon gas model for transient ballistic-diffusive heat transport. J. Heat Transf. 135(4), 044501 (2013)

    Article  Google Scholar 

  81. Y. Ma, A transient ballistic– diffusive heat conduction model for heat pulse propagation in nonmetallic crystals. Int. J. Heat Mass Transf. 66, 592–602 (2013)

    Article  Google Scholar 

  82. Y. Ma, Equation of phonon hydrodynamics for non-Fourier heat conduction, in 44th AIAA Thermophysics Conference, pp. 2902 (2013)

    Google Scholar 

  83. F.X. Alvarez, D. Jou, Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Appl. Phys. Lett. 90(8), 083109 (2007)

    Article  Google Scholar 

  84. D. Jou, J. Casas-Vázquez, G. Lebon, Extended irreversible thermodynamics. Rep. Prog. Phys. 51(8), 1105 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  85. D. Jou, J. Casas-Vázquez, G. Lebon, M. Grmela, A phenomenological scaling approach for heat transport in nano-systems. Appl. Math. Lett. 18(8), 963–967 (2005)

    Article  MATH  Google Scholar 

  86. G. Lebon, M. Grmela, C. Dubois, From ballistic to diffusive regimes in heat transport at nano-scales. Comptes Rendus Mecanique 339(5), 324–328 (2011)

    Article  Google Scholar 

  87. G. Lebon, M. Hatim, M. Grmela, Ch. Dubois, An extended thermodynamic model of transient heat conduction at sub-continuum scales. 467(2135), 3241–3256 (2011)

    Google Scholar 

  88. D. Jou, J. Casas-Vazquez, G. Lebon, Extended irreversible thermodynamics revisited (1988–98). Rep. Prog. Phys. 62(7), 1035 (1999)

    Article  MathSciNet  Google Scholar 

  89. F.X. Alvarez, D. Jou, Boundary conditions and evolution of ballistic heat transport. J. Heat Transf. 132(1), 012404 (2010)

    Article  Google Scholar 

  90. R. Kovács, P. Ván, Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)

    Article  Google Scholar 

  91. R. Kovács, P. Ván, Models of ballistic propagation of heat at low temperatures. Int. J. Thermophys. 37(9), 95 (2016)

    Article  Google Scholar 

  92. R. Kovács, P. Ván, Second sound and ballistic heat conduction: NaF experiments revisited. Int. J. Heat Mass Transf. 117, 682–690 (2018), arXiv:1708.09770

    Article  Google Scholar 

  93. L.D. Landau, E.M. Lifshitz, Theoretical Physics, vol. 6 (Fluid Mechanics. Nauka, Moscow, 1986)

    Google Scholar 

  94. A. Berezovski, M. Berezovski, Influence of microstructure on thermoelastic wave propagation. Acta Mechanica 224(11), 2623–2633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  95. A. Berezovski, J. Engelbrecht, P. Ván, Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Arch. Appl. Mech. 84(9–11), 1249–1261 (2014)

    Article  MATH  Google Scholar 

  96. A. Berezovski, P. Ván, Microdeformation and microtemperature. pp. 175–190 (2017)

    Chapter  MATH  Google Scholar 

  97. A. Berezovski, P. Ván, Internal Variables in Thermoelasticity (Springer, Berlin, 2017)

    Google Scholar 

  98. P. Ván, A. Berezovski, J. Engelbrecht, Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33(3), 235–254 (2008)

    Article  MATH  Google Scholar 

  99. A. Berezovski, J. Engelbrecht, G.A. Maugin, Thermoelasticity with dual internal variables. J. Therm. Stresses 34(5–6), 413–430 (2011)

    Article  MATH  Google Scholar 

  100. I. Müller, T. Ruggeri, Rational Extended Thermodynamics (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  101. B. Nyíri, On the entropy current. J. Non-Equilib. Thermodyn. 16(2), 179–186 (1991)

    Google Scholar 

  102. J. Verhás, Thermodynamics and Rheology (Akadémiai Kiadó-Kluwer Academic Publisher, 1997)

    Google Scholar 

  103. A. Berezovski and P. Ván. Internal variables in thermoelasticity. In Gy. Gróf and R. Kovács, editors, MS Abstract book of the 14th Joint European Thermodynamics Conference, pages 102–104, Budapest, 2017. Department of Energy Engineering, BME. ISBN 978-963-313-259-3

    Google Scholar 

  104. R. Kovács, Heat conduction beyond Fourier’s law: theoretical predictions and experimental validation. Ph.D. thesis, Budapest University of Technology and Economics (BME) (2017)

    Google Scholar 

  105. B.D. Coleman, D.C. Newman, Implications of a nonlinearity in the theory of second sound in solids. Phys. Rev. B 37(4), 1492 (1988)

    Article  Google Scholar 

  106. E. Parthãe, L. Gmelin, Gmelin Handbook of Inorganic and Organometallic Chemistry: TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, vol. 2 (Springer, Berlin, 1993)

    Google Scholar 

  107. S. Bargmann, P. Steinmann, Finite element approaches to non-classical heat conduction in solids. Comput. Model. Eng. Sci. 9(2), 133–150 (2005)

    MathSciNet  MATH  Google Scholar 

  108. P.G. Klemens, Theory of thermal conduction in thin ceramic films. Int. J. Thermophys. 22(1), 265–275 (2001)

    Article  Google Scholar 

  109. D.G. Cahill, K. Goodson, A. Majumdar, Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 124(2), 223–241 (2002)

    Article  Google Scholar 

  110. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)

    Article  Google Scholar 

  111. W. Kim, R. Wang, A. Majumdar, Nanostructuring expands thermal limits. Nano Today 2(1), 40–47 (2007)

    Article  Google Scholar 

  112. V. Rawat, Y.K. Koh, D.G. Cahill, T.D. Sands, Thermal conductivity of (Zr, W) N/ScN metal/semiconductor multilayers and superlattices. J. Appl. Phys. 105(2), 024909 (2009)

    Article  Google Scholar 

  113. B. Saha, T.D. Sands, U.V. Waghmare, First-principles analysis of ZrN/ScN metal/semiconductor superlattices for thermoelectric energy conversion. J. Appl. Phys. 109(8), 083717 (2011)

    Article  Google Scholar 

  114. B. Saha, Y.R. Koh, J. Comparan, S. Sadasivam, J.L. Schroeder, M. Garbrecht, A. Mohammed, J. Birch, T. Fisher, A. Shakouri, T.D. Sands, Cross-plane thermal conductivity of (Ti, W) N/(Al, Sc) N metal/semiconductor superlattices. Phys. Rev. B 93(4), 045311 (2016)

    Article  Google Scholar 

  115. W. Liu, M. Asheghi, Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl. Phys. Lett. 84(19), 3819–3821 (2004)

    Article  Google Scholar 

  116. Z. Hao, L. Zhichao, T. Lilin, T. Zhimin, L. Litian, L. Zhijian, Measurement of thermal conductivity of ultra-thin single crystal silicon film using symmetric structure. Chin. J. Semiconductors-Chin. Ed. 27(11), 1961 (2006)

    Google Scholar 

  117. F. Vázquez, F. Márkus, K. Gambár, Quantized heat transport in small systems: a phenomenological approach. Phys. Rev. E 79(3), 031113 (2009)

    Article  Google Scholar 

  118. F. Vázquez, F. Márkus, Size effects on heat transport in small systems: dynamical phase transition from diffusive to ballistic regime. J. Appl. Phys. 105(6), 064915 (2009)

    Article  Google Scholar 

  119. M. Wang, N. Yang, Z.-Y. Guo, Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110(6), 064310 (2011)

    Article  Google Scholar 

  120. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163 (2008)

    Article  Google Scholar 

  121. S.R. Choi, D. Kim, S.-H. Choa, S.-H. Lee, J.-K. Kim, Thermal conductivity of AlN and SiC thin films. Int. J. Thermophys. 27(3), 896–905 (2006)

    Article  Google Scholar 

  122. N. Yang, G. Zhang, B. Li, Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires. Nano Today 5(2), 85–90 (2010)

    Article  Google Scholar 

  123. R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, A. Majumdar, Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101(10), 105501 (2008)

    Article  Google Scholar 

  124. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, Hi. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95(6), 065502 (2005)

    Google Scholar 

  125. B.-Y. Cao, Z.-Y. Guo, Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102(5), 053503 (2007)

    Article  Google Scholar 

  126. P.T. Alvarez, Thermal Transport in Semiconductors (Springer, Berlin, 2017)

    Google Scholar 

  127. A. Ziabari, P. Torres, B. Vermeersch, Y. Xuan, X. Cartoixà, A. Torelló, J.-H. Bahk, Y.R. Koh, M. Parsa, D.Y. Peide, F.X. Alvarez, A. Shakouri, Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices. Nat. Commun. 9(1), 255 (2018)

    Article  Google Scholar 

  128. J. Shiomi, S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: classical molecular dynamics simulations. Phys. Rev. B 73(20), 205420 (2006)

    Article  Google Scholar 

  129. C.-W. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl, Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101(7), 075903 (2008)

    Google Scholar 

  130. A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, N. Marzari, Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015)

    Article  Google Scholar 

  131. J.L. Vossen, W. Kern, W. Kern, Thin Film Processes II, vol. 2 (Gulf Professional Publishing, Houston, 1991)

    Chapter  Google Scholar 

  132. M. Ohring, Materials Science of Thin Films (Elsevier, New York, 2001)

    Google Scholar 

  133. A. Majumdar, Microscale heat conduction in dielectric thin films. J. Heat Transf. 115(1), 7–16 (1993)

    Article  Google Scholar 

  134. A.A. Joshi, A. Majumdar, Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74(1), 31–39 (1993)

    Article  Google Scholar 

  135. G. Chen, Phonon wave heat conduction in thin films and superlattices. J. Heat Transf. 121(4), 945–953 (1999)

    Article  Google Scholar 

  136. G. Chen, Particularities of heat conduction in nanostructures. J. Nanoparticle Res. 2(2), 199–204 (2000)

    Article  Google Scholar 

  137. G. Chen, Phonon heat conduction in nanostructures. Int. J. Therm. Sci. 39(4), 471–480 (2000)

    Article  Google Scholar 

  138. S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Femtosecond electronic heat-transport dynamics in thin gold films. Phys. Rev. Lett. 59(17), 1962 (1987)

    Article  Google Scholar 

  139. S.D. Brorson, A. Kazeroonian, J.S. Moodera, D.W. Face, T.K. Cheng, E.P. Ippen, M.S. Dresselhaus, G. Dresselhaus, Femtosecond room-temperature measurement of the electron-phonon coupling constant \(\gamma \) in metallic superconductors. Phys. Rev. Lett. 64(18), 2172 (1990)

    Article  Google Scholar 

  140. J. Hohlfeld, J.G. Müller, S.-S. Wellershoff, E. Matthias, Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness. Appl. Phys. B 64(3), 387–390 (1997)

    Article  Google Scholar 

  141. M.E. Siemens, Q. Li, R. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, H.C. Kapteyn, Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9(1), 26 (2010)

    Article  Google Scholar 

  142. K.M. Hoogeboom-Pot, J.N. Hernandez-Charpak, X. Gu, T.D. Frazer, E.H. Anderson, W. Chao, R.W. Falcone, R. Yang, M.M. Murnane, H.C. Kapteyn, D. Nardi. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency, in Proceedings of the National Academy of Sciences (2015), pp. 201503449

    Google Scholar 

  143. J. Lee, J. Lim, P. Yang, Ballistic phonon transport in holey silicon. Nano Lett. 15(5), 3273–3279 (2015)

    Article  Google Scholar 

  144. C.Y. Zhao, T.J. Lu, H.P. Hodson, J.D. Jackson, The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Mater. Sci. Eng.: A 367(1–2), 123–131 (2004)

    Article  Google Scholar 

  145. F.A. Coutelieris, J.M.P.Q. Delgado, Transport Processes in Porous Media (Springer, Berlin, 2012)

    Google Scholar 

  146. K. Bamdad, A. Azimi, H. Ahmadikia, Thermal performance analysis of arbitrary-profile fins with non-fourier heat conduction behavior. J. Eng. Math. 76(1), 181–193 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  147. T.J. Bright, Z.M. Zhang, Common misperceptions of the hyperbolic heat equation. J. Thermophys. Heat Transf. 23, 601–607 (2009)

    Article  Google Scholar 

  148. R. Singh, H.S. Kasana, Computational aspects of effective thermal conductivity of highly porous metal foams. Appl. Therm. Eng. 24(13), 1841–1849 (2004)

    Article  Google Scholar 

  149. M.A. Schuetz, L.R. Glicksman, A basic study of heat transfer through foam insulation. J. Cell. Plast. 20(2), 114–121 (1984)

    Article  Google Scholar 

  150. J.M.P.Q. Delgado, Heat and Mass Transfer in Porous Media (Springer, Berlin, 2012)

    Google Scholar 

  151. A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45(5), 1017–1031 (2002)

    Article  MATH  Google Scholar 

  152. A.M. Druma, M.K. Alam, C. Druma, Analysis of thermal conduction in carbon foams. Int. J. Therm. Sci. 43(7), 689–695 (2004)

    Article  Google Scholar 

  153. F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure (Academic, 2012)

    Google Scholar 

  154. Z. Liu, Multiphysics in Porous Materials (Springer International Publishing AG, 2018)

    Google Scholar 

  155. A.G. Leach, The thermal conductivity of foams I: models for heat conduction. J. Phys. D: Appl. Phys. 26(5), 733 (1993)

    Article  Google Scholar 

  156. A.V. Luikov, Application of the methods of thermodynamics of irreversible processes to the investigation of heat and mass transfer. J. Eng. Phys. 9(3), 189–202 (1965)

    Article  Google Scholar 

  157. A.V. Luikov, Application of irreversible thermodynamics methods to investigation of heat and mass transfer. Int. J. Heat Mass Transf. 9(2), 139–152 (1966)

    Article  Google Scholar 

  158. W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. 112(3), 555–560 (1990)

    Article  Google Scholar 

  159. A. Graßmann, F. Peters, Experimental investigation of heat conduction in wet sand. Heat Mass Transf. 35(4), 289–294 (1999)

    Article  Google Scholar 

  160. H. Herwig, K. Beckert, Fourier versus non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Trans.-Am. Soc. Mech. Eng. J. Heat Transf. 122(2), 363–364 (2000)

    Article  Google Scholar 

  161. H. Herwig, K. Beckert, Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Heat Mass Transf. 36(5), 387–392 (2000)

    Article  Google Scholar 

  162. A. Vedavarz, S. Kumar, M.K. Moallemi, Significance of non-Fourier heat waves in conduction. J. Heat Transf. 116(1), 221–226 (1994)

    Article  Google Scholar 

  163. K. Mitra, S. Kumar, A. Vedevarz, M.K. Moallemi, Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117(3), 568–573 (1995)

    Article  Google Scholar 

  164. E.P. Scott, M. Tilahun, B. Vick, The question of thermal waves in heterogeneous and biological materials. J. Biomech. Eng. 131(7), 074518 (2009)

    Article  Google Scholar 

  165. W. Roetzel, N. Putra, S.K. Das, Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int. J. Therm. Sci. 42(6), 541–552 (2003)

    Article  Google Scholar 

  166. P.J. Antaki, New interpretation of non-Fourier heat conduction in processed meat. J. Heat Transf. 127(2), 189–193 (2005)

    Article  Google Scholar 

  167. F. Jiang, Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse. Microscale Thermophys. Eng. 6(4), 331–346 (2003)

    Article  Google Scholar 

  168. D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Article  Google Scholar 

  169. R.E. Khayat, J. deBruyn, M. Niknami, D.F. Stranges, R.M.H. Khorasany, Non-Fourier effects in macro-and micro-scale non-isothermal flow of liquids and gases. review. Int. J. Therm. Sci. 97, 163–177 (2015)

    Article  Google Scholar 

  170. L. Kovács, E. Mészáros, F. Deák, G. Somodi, K. Máté, A. Jakab (Kőmérő Kft.), Vásárhelyi B. (Vásárhelyi és Társa Kft.), Geiger J. (SZTE), Dankó Gy., Korpai F., Mező Gy., Darvas K. (Golder Zrt.), Ván P., Fülöp T., and Asszonyi Cs. (Montavid Termodinamikai Kutatócsoport). A Geotechnikai Értelmező Jelentés (GÉJ) felülvizsgálata és kiterjesztése. Technical report. Kézirat - Kőmérő Kft. Pécs, RHK Kft. Irattár, RHK-K-032/12 (2012)

    Google Scholar 

  171. B. Czél, T. Fülöp, Gy. Gróf, Á. Gyenis, P. Ván, Simple heat conduction experiments, in 11th International Conference on Heat Engines and Environmental Protection, ed. by Dombi Sz, Budapest, BME, Dep. of Energy Engineering (2013), pp. 141–146

    Google Scholar 

  172. T. Fülöp, R. Kovács, P. Ván, Thermodynamic hierarchies of evolution equations. Proc. Estonian Acad. Sci. 64(3), 389–395 (2015)

    Article  MATH  Google Scholar 

  173. A. Kossa, A new biaxial compression fixture for polymeric foams. Polym. Test. 45, 47–51 (2015)

    Article  Google Scholar 

  174. A. Kossa, Sz. Berezvai, Visco-hyperelastic characterization of polymeric foam materials. Mater. Today: Proc. 3(4), 1003–1008 (2016)

    Google Scholar 

  175. M.F. Ashby, T. Evans, N.A. Fleck, J.W. Hutchinson, H.N.G. Wadley, L.J. Gibson, Metal Foams: A Design Guide (Elsevier, 2000)

    Google Scholar 

  176. D.L. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, Oxford, 2001)

    Google Scholar 

  177. M.A. Mujeebu, M. Zu. Abdullah, M.Z.A. Bakar, A.A. Mohamad, M.K. Abdullah, Applications of porous media combustion technology–a review. Appl. Energy 86(9), 1365–1375 (2009)

    Article  Google Scholar 

  178. M.A. Mujeebu, M.Z. Abdullah, A.A. Mohamad, M.A. Bakar, Trends in modeling of porous media combustion. Prog. Energy Combust. Sci. 36(6), 627–650 (2010)

    Article  Google Scholar 

  179. D. Trimis, F. Durst, Combustion in a porous medium-advances and applications. Combust. Sci. Technol. 121(1–6), 153–168 (1996)

    Article  Google Scholar 

  180. N.I. Kim, S. Kato, T. Kataoka, T. Yokomori, S. Maruyama, T. Fujimori, K. Maruta, Flame stabilization and emission of small Swiss-roll combustors as heaters. Combust. Flame 141(3), 229–240 (2005)

    Article  Google Scholar 

  181. N.I. Kim, S. Aizumi, T. Yokomori, S. Kato, T. Fujimori, K. Maruta, Development and scale effects of small swiss-roll combustors. Proc. Combust. Inst. 31(2), 3243–3250 (2007)

    Article  Google Scholar 

  182. S.K. Som, A. Datta, Thermodynamic irreversibilities and exergy balance in combustion processes. Prog. Energy Combust. Sci. 34(3), 351–376 (2008)

    Article  Google Scholar 

  183. S. Wood, A.T. Harris, Porous burners for lean-burn applications. Prog. Energy Combust. Sci. 34(5), 667–684 (2008)

    Article  Google Scholar 

  184. Y. Ju, K. Maruta, Microscale combustion: technology development and fundamental research. Prog. Energy Combust. Sci. 37(6), 669–715 (2011)

    Article  Google Scholar 

  185. S. Whitaker, Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Advances in Heat Transfer, vol. 13 (Elsevier, 1977). pp. 119–203

    Google Scholar 

  186. L. Imre, T. Környey, Computer simulation of salami drying. Int. J. Numer. Methods Eng. 30(4), 767–777 (1990)

    Article  Google Scholar 

  187. T.Z. Harmathy, Simultaneous moisture and heat transfer in porous systems with particular reference to drying. Ind. Eng. Chem. Fundam. 8(1), 92–103 (1969)

    Article  Google Scholar 

  188. I. Farkas, M.J. Lampinen, K. Ojala, Water flow and binder migration during drying of coated paper. Dry. Technol. 9(4), 1019–1049 (1991)

    Article  Google Scholar 

  189. C.L.D. Huang, H.H. Siang, C.H. Best, Heat and moisture transfer in concrete slabs. Int. J. Heat Mass Transf. 22(2), 257–266 (1979)

    Article  Google Scholar 

  190. S. Whitaker, flow in porous media i: a theoretical derivation of darcy’s law. Transp. Porous Media 1(1), 3–25 (1986)

    Article  MathSciNet  Google Scholar 

  191. M. Liu, J. Wu, Y. Gan, D.A.H. Hanaor, C.Q. Chen, Evaporation limited radial capillary penetration in porous media. Langmuir 32(38), 9899–9904 (2016)

    Article  Google Scholar 

  192. G. Rehage, O. Ernst, J. Fuhrmann, Fickian and non-Fickian diffusion in high polymer systems. Discuss. Faraday Soc. 49, 208–221 (1970)

    Article  Google Scholar 

  193. D. Jou, J. Casas-Vázquez, G. Lebon, Extended Irreversible Thermodynamics, 4th edn. (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  194. D. Jou, J. Camacho, M. Grmela, On the nonequilibrium thermodynamics of non-Fickian diffusion. Macromolecules 24(12), 3597–3602 (1991)

    Article  Google Scholar 

  195. E.H. Wong, K.C. Chan, T.B. Lim, T.F. Lam, Non-Fickian moisture properties characterisation and diffusion modeling for electronic packages (1999), pp. 302–306

    Google Scholar 

  196. D. De Kee, Q. Liu, J. Hinestroza, Viscoelastic (non-Fickian) diffusion. Canad. J. Chem. Eng. 83(6), 913–929 (2005)

    Article  Google Scholar 

  197. L. Durlofsky, J.F. Brady, Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30(11), 3329–3341 (1987)

    Article  MATH  Google Scholar 

  198. K.Y. Wertheim, T. Roose, A mathematical model of lymphangiogenesis in a zebrafish embryo. Bull. Math. Biol. 79(4), 693–737 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  199. H.C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbul. Combust. 1(1), 27 (1949)

    Article  MATH  Google Scholar 

  200. D.A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int. J. Heat Fluid Flow 12(3), 269–272 (1991)

    Article  Google Scholar 

  201. K. Vafai, S. Kim, On the limitations of the Brinkman-Forchheimer-extended Darcy equation. Int. J.f Heat Fluid Flow 16(1), 11–15 (1995)

    Article  Google Scholar 

  202. F.J. Valdes-Parada, J.A. Ochoa-Tapia, J. Alvarez-Ramirez, On the effective viscosity for the darcy-brinkman equation. Phys. A: Stat. Mech. Appl. 385(1), 69–79 (2007)

    Article  MathSciNet  Google Scholar 

  203. K. Vafai, Convective flow and heat transfer in variable-porosity media. J. Fluid Mech. 147, 233–259 (1984)

    Article  MATH  Google Scholar 

  204. K. Vafai, R.L. Alkire, C.L. Tien, An experimental investigation of heat transfer in variable porosity media. J. Heat Transf. 107(3), 642–647 (1985)

    Article  Google Scholar 

  205. K. Vafai, Analysis of the channeling effect in variable porosity media. J. Energy Res. Technol. 108(2), 131–139 (1986)

    Article  Google Scholar 

  206. A. Amiri, K. Vafai, Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transf. 37(6), 939–954 (1994)

    Article  Google Scholar 

  207. A. Amiri, K. Vafai, Transient analysis of incompressible flow through a packed bed. Int. J. Heat Mass Transf. 41(24), 4259–4279 (1998)

    Article  MATH  Google Scholar 

  208. W.J. Minkowycz, A. Haji-Sheikh, K.F. Vafai, On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number. Int. J. Heat Mass Transf. 42(18), 3373–3385 (1999)

    Article  MATH  Google Scholar 

  209. B. Alazmi, K. Vafai, Analysis of variants within the porous media transport models. J. Heat Transf. 122(2), 303–326 (2000)

    Article  Google Scholar 

  210. M. Modaresifar, G.J. Kowalski, Numerical simulation of an injection microscale calorimeter to identify significant thermal processes and verify data reduction procedures, in ASME 2017 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, 2017), pp. V008T10A043–V008T10A043

    Google Scholar 

  211. A.J. Conway, W.M. Saadi, F.L. Sinatra, G.J. Kowalski, D. Larson, J. Fiering, Dispersion of a nanoliter bolus in microfluidic co-flow. J. Micromech. Microeng. 24(3), 034006 (2014)

    Article  Google Scholar 

  212. M. Modaresifar, G.J. Kowalski, Microscale calorimetric device for determining reaction parameters. Thermochimica Acta 655, 137–144 (2017)

    Article  Google Scholar 

  213. M. Modaresifar, Thermal Analysis of Chemical Reactions in Microcalorimeter Using Extraordinary Optical Transmission Through Nanohole Arrays. Ph.D. thesis, Northeastern University (2019)

    Google Scholar 

  214. T.N.F. Roach, P. Salamon, J. Nulton, B. Andresen, B. Felts, A. Haas, S. Calhoun, N. Robinett, F. Rohwer, Application of finite-time and control thermodynamics to biological processes at multiple scales. J. Non-Equilib. Thermodyn. 43(3), 193–210 (2018)

    Article  Google Scholar 

  215. H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948)

    Article  Google Scholar 

  216. M.M. Chen, K.R. Holmes, Microvascular contributions in tissue heat transfer. Ann. N.Y. Acad. Sci. 335(1), 137–150 (1980)

    Article  Google Scholar 

  217. S. Weinbaum, L.M. Jiji, D.E. Lemons, Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer-Part I: anatomical foundation and model conceptualization. J. Biomech. Eng. 106(4), 321–330 (1984)

    Article  Google Scholar 

  218. L.M. Jiji, Heat Conduction: Third Edition, 3rd edn. (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  219. S. Weinbaum, L.M. Jiji, A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. J. Biomech. Eng. 107(2), 131–139 (1985)

    Article  Google Scholar 

  220. W. Wulff, The energy conservation equation for living tissue. IEEE Trans. Biomed. Eng. 6(BME-21), 494–495 (1974)

    Article  Google Scholar 

  221. H.G. Klinger, Heat transfer in perfused biological tissue-I: general theory. Bull. Math. Biol. 36, 403–415 (1974)

    MathSciNet  MATH  Google Scholar 

  222. H.G. Klinger, Heat transfer in perfused biological tissue-II: The “macroscopic” temperature distribution in tissue. Bull. Math. Biol. 40(2), 183–199 (1978)

    MathSciNet  Google Scholar 

  223. G.T. Anderson, J.W. Valvano, A small artery heat transfer model for self-heated thermistor measurements of perfusion in the kidney cortex. J. Biomech. Eng. 116(1), 71–78 (1994)

    Article  Google Scholar 

  224. A. Zolfaghari, M. Maerefat, A new simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environments. Build. Environ. 45(10), 2068–2076 (2010)

    Article  Google Scholar 

  225. A.P. Gagge, Rational temperature indices of man’s thermal environment and their use with a 2-node model of his temperature regulation, in Federation Proceedings, vol. 32 (1973), pp. 1572

    Google Scholar 

  226. P.A. Patel, J.W. Valvano, J.A. Pearce, S.A. Prahl, C.R. Denham, A self-heated thermistor technique to measure effective thermal properties from the tissue surface. J. Biomech. Eng. 109(4), 330–335 (1987)

    Article  Google Scholar 

  227. R.B. Roemer, E.G. Moros, K. Hynynen, A comparison of bioheat transfer and effective conductivity equation predictions to experimental hyperthermia data, Advances in Bioengineering (ASME Winter Annual Meeting, 1989), pp. 11–15

    Google Scholar 

  228. J.L.M. Hensen, Literature review on thermal comfort in transient conditions. Build. Environ. 25(4), 309–316 (1990)

    Article  Google Scholar 

  229. F. Kreith, The CRC Handbook of Thermal Engineering (Springer Science & Business Media, Berlin, 2000)

    Google Scholar 

  230. L. Zhu, C. Diao, Theoretical simulation of temperature distribution in the brain during mild hypothermia treatment for brain injury. Med. Biolo. Eng. Comput. 39(6), 681–687 (2001)

    Article  Google Scholar 

  231. G. Chenhua, C. Ruixian, An analytical solution of non-Fourier Chen-Holmes bioheat transfer equation. Chin. Sci. Bull. 50(23), 2791–2792 (2005)

    Article  MathSciNet  Google Scholar 

  232. Y-G. Lv, J. Liu, Effect of transient temperature on thermoreceptor response and thermal sensation. Build. Environ. 42(2), 656–664 (2007)

    Article  Google Scholar 

  233. W.J. Minkowycz, E.M. Sparrow, Advances in Numerical Heat Transfer, vol. 3. (CRC, Bocca Raton, 2009)

    Google Scholar 

  234. A. Zolfaghari, M. Maerefat, Bioheat Transfer. InTech (2011)

    Google Scholar 

  235. S. Becker, A. Kuznetsov, Heat Transfer and Fluid Flow in Biological Processes (Academic, 2014)

    Google Scholar 

  236. C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics (Springer, Berlin, 2004)

    Google Scholar 

  237. W. Muschik, Objectivity and frame indifference, revisited. Arch. Mech. 50(3), 541–547 (1998)

    MathSciNet  MATH  Google Scholar 

  238. T. Matolcsi, P. Ván, Can material time derivative be objective? Phys. Lett. A 353(2), 109–112 (2006)

    Article  Google Scholar 

  239. A. Banerjee, A.A. Ogale, C. Das, K. Mitra, C. Subramanian, Temperature distribution in different materials due to short pulse laser irradiation. Heat Transf. Eng. 26(8), 41–49 (2005)

    Article  Google Scholar 

  240. M. Jaunich, S. Raje, K. Kim, K. Mitra, Z. Guo, Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int. J. Heat Mass Transf. 51(23), 5511–5521 (2008)

    Article  MATH  Google Scholar 

  241. P. Dhar, A. Paul, A. Narasimhan, S.K. Das, Analytical prediction of sub surface thermal history in translucent tissue phantoms during plasmonic photo thermotherapy (2015). arXiv:1511.04549

  242. D.Y. Tzou, A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)

    Article  Google Scholar 

  243. D.Y. Tzou, Macro- to Micro-scale Heat Transfer: The Lagging Behavior (CRC Press, Bocca Raton, 1996)

    Google Scholar 

  244. J. Zhou, J.K. Chen, Y. Zhang, Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Comput. Biol. Med. 39(3), 286–293 (2009)

    Article  Google Scholar 

  245. P. Yuan, Numerical analysis of an equivalent heat transfer coefficient in a porous model for simulating a biological tissue in a hyperthermia therapy. Int. J. Heat Mass Transf. 52(7), 1734–1740 (2009)

    Article  MATH  Google Scholar 

  246. P. Hooshmand, A. Moradi, B. Khezry, Bioheat transfer analysis of biological tissues induced by laser irradiation. Int. J. Therm. Sci. 90, 214–223 (2015)

    Article  Google Scholar 

  247. S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction. Int. J. Heat Mass Transf. 78, 58–63 (2014)

    Article  Google Scholar 

  248. S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction: higher-order approximations. Int. J. Therm. Sci. 113, 83–88 (2017)

    Article  Google Scholar 

  249. M. Fabrizio, B. Lazzari, V. Tibullo, Stability and thermodynamic restrictions for a dual-phase-lag thermal model. J. Non-Equilib. Thermodyn. (2017)

    Google Scholar 

  250. M. Fabrizio, B. Lazzari, Stability and second law of thermodynamics in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 74, 484–489 (2014)

    Article  Google Scholar 

  251. M. Fabrizio, F. Franchi, Delayed thermal models: stability and thermodynamics. J. Therm. Stress. 37(2), 160–173 (2014)

    Article  Google Scholar 

  252. R. Quintanilla, R. Racke, Qualitative aspects in dual-phase-lag heat conduction. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 463(2079), 659–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  253. M. Dreher, R. Quintanilla, R. Racke, Ill-posed problems in thermomechanics. Appl. Math. Lett. 22(9), 1374–1379 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  254. F. Xu, K.A. Seffen, T.J. Lu, Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf. 51(9), 2237–2259 (2008)

    Article  MATH  Google Scholar 

  255. N. Sahoo, S. Ghosh, A. Narasimhan, Sa. K. Das, Investigation of non-Fourier effects in bio-tissues during laser assisted photothermal therapy. Int. J. Therm. Sci. 76, 208–220 (2014)

    Article  Google Scholar 

  256. Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues. Int. J. Heat Mass Transf. 52(21), 4829–4834 (2009)

    Article  MATH  Google Scholar 

  257. N. Afrin, J. Zhou, Y. Zhang, D.Y. Tzou, J.K. Chen, Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model. Numer. Heat Transf. Part A: Appl. 61(7), 483–501 (2012)

    Article  Google Scholar 

  258. Kuo-Chi Liu, Han-Taw Chen, Investigation for the dual phase lag behavior of bio-heat transfer. Int. J. Therm. Sci. 49(7), 1138–1146 (2010)

    Article  Google Scholar 

  259. W. Andrä, C.G. d’Ambly, R. Hergt, I. Hilger, W.A. Kaiser, Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J. Mag. Mag. Mater. 194(1), 197–203 (1999)

    Article  Google Scholar 

  260. D. Tang, N. Araki, N. Yamagishi, Transient temperature responses in biological materials under pulsed IR irradiation. Heat Mass Transf. 43(6), 579–585 (2007)

    Article  Google Scholar 

  261. Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, vol. 5 (Springer Science & Business Media, Berlin, 2013)

    Google Scholar 

  262. B. Kieback, A. Neubrand, H. Riedel, Processing techniques for functionally graded materials. Mater. Sci. Eng.: A 362(1–2), 81–106 (2003)

    Article  Google Scholar 

  263. V. Birman, L.W. Byrd, Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60(5), 195–216 (2007)

    Article  Google Scholar 

  264. X.-Q. Fang, C. Hu, Dynamic effective thermal properties of functionally graded fibrous composites using non-fourier heat conduction. Comput. Mater. Sci. 42(2), 194–202 (2008)

    Article  Google Scholar 

  265. A. Figueroa, F. Vázquez, Optimal performance and entropy generation transition from micro to nanoscaled thermoelectric layers. Int. J. Heat Mass Transf. 71, 724–731 (2014)

    Article  Google Scholar 

  266. F. Vázquez, A. Figueroa, I. Rodriguez-Vargas, Nonlocal and memory effects in nanoscaled thermoelectric layers. J. Appl. Phys. 121(1), 014311 (2017)

    Article  Google Scholar 

  267. J. Rojas, I. Rivera, A. Figueroa, F. Vázquez, Coupled thermoelectric devices: theory and experiment. Entropy 18(7), 255 (2016)

    Article  MathSciNet  Google Scholar 

  268. P. Rogolino, V.A. Cimmelli, Thermoelectric efficiency of graded sicge 1-c alloys. J. Appl. Phys. 124(9), 094301 (2018)

    Article  Google Scholar 

  269. P. Rogolino, A. Sellitto, V.A. Cimmelli, Minimal entropy production and efficiency of energy conversion in nonlinear thermoelectric systems with two temperatures. J. Non-Equilib. Thermodyn. 42(3), 287–303 (2017)

    Article  Google Scholar 

  270. P. Rogolino, A. Sellitto, V.A. Cimmelli, Influence of nonlinear effects on the efficiency of a thermoelectric generator. Zeitschrift für angewandte Mathematik und Physik 66(5), 2829–2842 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  271. B.-Y. Cao, M. Di Domenico, B.-D. Nie, A. Sellitto, Influence of the composition gradient on the propagation of heat pulses in functionally graded nanomaterials. Proc. R. Soc. A 475(2221), 20180499 (2019)

    Article  MathSciNet  Google Scholar 

  272. J. Sladek, V. Sladek, C. Zhang, Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method. Comput. Mater. Sci. 28(3–4), 494–504 (2003)

    Article  Google Scholar 

  273. H.J. Xu, Z.B. Xing, F.Q. Wang, Z.M. Cheng, Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chem. Eng. Sci. (2018)

    Google Scholar 

  274. S. Lee, S.U.-S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 121(2), 280–289 (1999)

    Article  Google Scholar 

  275. J.A. Eastman, S.U.-S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  Google Scholar 

  276. J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids. J. Nanoparticle Res. 6(6), 577–588 (2004)

    Article  Google Scholar 

  277. X.-Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46(1), 1–19 (2007)

    Article  Google Scholar 

  278. J. Buongiorno, D.C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y.V. Tolmachev, Pa. Keblinski, L.-W. Hu, J.L. Alvarado et al., A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 106(9), 094312 (2009)

    Google Scholar 

  279. J. Eapen, R. Rusconi, R. Piazza, S. Yip, The classical nature of thermal conduction in nanofluids. J. Heat Transf. 132(10), 102402 (2010)

    Article  Google Scholar 

  280. J.-H. Lee, S.-H. Lee, C. Choi, S. Jang, S. Choi, A review of thermal conductivity data, mechanisms and models for nanofluids. Int. J. Micro-Nano Scale Transp. (2011)

    Google Scholar 

  281. S.K. Das, S.U.S. Choi, E. Hrishikesh, Patel. Heat transfer in nanofluids–a review. Heat Transf. Eng. 27(10), 3–19 (2006)

    Google Scholar 

  282. P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45(4), 855–863 (2002)

    Article  MATH  Google Scholar 

  283. S.U.S. Choi, Nanofluids: from vision to reality through research. J. Heat Transf. 131(3), 033106 (2009)

    Article  Google Scholar 

  284. S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52(13–14), 3187–3196 (2009)

    Article  MATH  Google Scholar 

  285. L. Wang, J. Fan, Nanofluids research: key issues. Nanoscale Res. Lett. 5(8), 1241 (2010)

    Article  Google Scholar 

  286. P. Vadasz, Heat transfer augmentation in nanofluids via nanofins. Nanoscale Res. Lett. 6(1), 154 (2011)

    Article  Google Scholar 

  287. J. Fan, L. Wang, Review of heat conduction in nanofluids. J. Heat Transf. 133(4), 040801 (2011)

    Article  Google Scholar 

  288. V.I. Terekhov, S.V. Kalinina, V.V. Lemanov, The mechanism of heat transfer in nanofluids: state of the art (review). part 1. synthesis and properties of nanofluids. Thermophys. Aeromech. 17(1), 1–14 (2010)

    Article  Google Scholar 

  289. V.I. Terekhov, S.V. Kalinina, V.V. Lemanov, The mechanism of heat transfer in nanofluids: state of the art (review). part 2. convective heat transfer. Thermophys. Aeromech. 17(2), 157–171 (2010)

    Article  Google Scholar 

  290. P. Vadasz, Heat conduction in nanofluid suspensions. J. Heat Transf. 128(5), 465–477 (2006)

    Article  Google Scholar 

  291. J.J. Vadasz, S. Govender, Thermal wave effects on heat transfer enhancement in nanofluids suspensions. Int. J. Therm. Sci. 49(2), 235–242 (2010)

    Article  Google Scholar 

  292. A.A. Mohamad, Myth about nano-fluid heat transfer enhancement. Int. J. Heat Mass Transf. 86, 397–403 (2015)

    Article  Google Scholar 

  293. T. Fülöp, Objective thermomechanics (2015) arXiv:1510.08038

  294. P. Ván, G.G. Barnaföldi, T. Bulik, T. Biró, S. Czellár, M. Cieślar, Cs. Czanik, E. Dávid, E. Debreceni, M. Denys et al., Long term measurements from the Mátra Gravitational and Geophysical Laboratory (2018) arXiv:1811.05198

  295. T. Fülöp, P. Ván, A. Csatár, Elasticity, plasticity, rheology and thermal stress-an irreversible thermodynamical theory. Elastic 2(7) (2013)

    Google Scholar 

  296. C. Asszonyi, A. Csatár, T. Fülöp. Elastic, thermal expansion, plastic and rheological processes-theory and experiment (2015) arXiv:1512.05863

  297. T. Fülöp, Cs. Asszonyi, P. Ván, Distinguished rheological models in the framework of a thermodynamical internal variable theory. Contin. Mech. Thermodyn. 27(6), 971–986 (2015)

    Google Scholar 

  298. M. Szücs, T. Fülöp, Kluitenberg-Verhás rheology of solids in the GENERIC framework. J. Non-Equilib. Thermodyn. 44(3), 247–259 (2019), arXiv:1812.07052

    Article  Google Scholar 

  299. R. Kovács, On the rarefied gas experiments. Entropy 21(7), 718–730 (2019)

    Article  Google Scholar 

  300. R. Kovács, D. Madjarevic, S. Simic, P. Ván, Theories of rarefied gases (2018), ArXiv:1812.10355

  301. J. Meixner, Absorption und Dispersion des Schalles in Gasen mit Chemisch Reagierenden und Anregbaren Komponenten. I. Teil. Annalen der Physik 435(6–7), 470–487 (1943)

    Article  Google Scholar 

  302. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover Publications, 1963)

    Google Scholar 

  303. M. Carrassi, A. Morro, A modified navier-stokes equation, and its consequences on sound dispersion. Il Nuovo Cimento B 9, 321–343 (1972)

    Article  Google Scholar 

  304. M. Carrassi, A. Morro, Some remarks about dispersion and absorption of sound in monatomic rarefied gases. Il Nuovo Cimento B 13, 281–289 (1973)

    Article  Google Scholar 

  305. D. Jou, C. Perez-Garcia, L.S. Garcia-Colin, M.L. De Haro, R.F. Rodriguez, Generalized hydrodynamics and extended irreversible thermodynamics. Phys. Rev. A 31(4), 2502 (1985)

    Article  Google Scholar 

  306. T. Ruggeri, M. Sugiyama, Rational Extended Thermodynamics Beyond the Monatomic Gas (Springer, Berlin, 2015)

    Book  MATH  Google Scholar 

  307. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Contin. Mech. Thermodyn. 25(6), 727–737 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  308. C.G. Sluijter, H.F.P. Knaap, J.J.M. Beenakker, Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurements at low temperatures I. Physica 30(4), 745–762 (1964)

    Article  Google Scholar 

  309. E. Meyer, G. Sessler, Schallausbreitung in gasen bei hohen frequenzen und sehr niedrigen drucken. Zeitschrift für Physik 149, 15–39 (1957)

    Article  MathSciNet  Google Scholar 

  310. H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows (Springer, Berlin, 2005)

    Google Scholar 

  311. H. Struchtrup, Resonance in rarefied gases. Contin. Mech. Thermodyn. 24(4–6), 361–376 (2012)

    Article  MathSciNet  Google Scholar 

  312. J.E. Rhodes Jr., The velocity of sound in hydrogen when rotational degrees of freedom fail to be excited. Phys. Rev. 70(11–12), 932 (1946)

    Article  Google Scholar 

  313. M. Greenspan, Propagation of sound in five monatomic gases. J. Acoust. Soc. Am. 28(4), 644–648 (1956)

    Article  Google Scholar 

  314. C.G. Sluijter, H.F.P. Knaap, J.J.M. Beenakker, Determination of rotational relaxation times of hydrogen isotopes by sound absorption measurements at low temperatures II. Physica 31(6), 915–940 (1965)

    Article  Google Scholar 

  315. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24(4–6), 271–292 (2012)

    Article  MATH  Google Scholar 

  316. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376(44), 2799–2803 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  317. T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, Non-linear extended thermodynamics of real gases with 6 fields. Int. J. Non-Linear Mech. 72, 6–15 (2015)

    Article  Google Scholar 

  318. H. Struchtrup, P. Taheri, Macroscopic transport models for rarefied gas flows: a brief review. IMA J. Appl. Math. 76(5), 672–697 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  319. H. Struchtrup, Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys. Fluids 16(11), 3921–3934 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  320. H. Struchtrup, M. Torrilhon, Higher-order effects in rarefied channel flows. Phys. Rev. E 78(4), 046301 (2008)

    Article  MathSciNet  Google Scholar 

  321. J.A. Gracki, G.P. Flynn, J. Ross, Viscosity of Nitrogen, Helium, Hydrogen, and Argon from -100 to 25 c up to 150-250 atmospheres. Project SQUID Technical Report, p. 33 (1969)

    Google Scholar 

  322. J.A. Gracki, G.P. Flynn, J. Ross, Viscosity of Nitrogen, Helium, Hydrogen, and Argon from -100 to 25 c up to 150–250 atm. J. Chem. Phys. 9, 3856–3863 (1969)

    Article  Google Scholar 

  323. J.H. Dymond, Corrections to the Enskog theory for viscosity and thermal conductivity. Phys. B 144(3), 267–276 (1987)

    Article  Google Scholar 

  324. W.M. Haynes, Viscosity of gaseous and liquid argon. Physica 67(3), 440–470 (1973)

    Article  Google Scholar 

  325. A. Van Itterbeek, W.H. Keesom, Measurements on the viscosity of helium gas between 293 and 1.6 k. Physica 5(4), 257–269 (1938)

    Article  Google Scholar 

  326. A. Van Itterbeek, A. Claes, Measurements on the viscosity of hydrogen-and deuterium gas between 293 K and 14 K. Physica 5(10), 938–944 (1938)

    Article  Google Scholar 

  327. A. Van Itterbeek, O. Van Paemel, Measurements on the viscosity of gases for low pressures at room temperature and at low temperatures. Physica 7(3), 273–283 (1940)

    Article  Google Scholar 

  328. D. Sette, A. Busala, J.C. Hubbard, Energy transfer by collisions in vapors of chlorinated methanes. J. Chem. Phys. 23(5), 787–793 (1955)

    Article  Google Scholar 

  329. P.S. Van der Gulik, C.A. ten Seldam, Density dependence of the viscosity of some noble gases. Int. J. Thermophys. 23(1), 15–26 (2002)

    Article  Google Scholar 

  330. R. Umla, V. Vesovic, Viscosity of liquids-Enskog-2\(\sigma \) model. Fluid Phase Equilib. 372, 34–42 (2014)

    Google Scholar 

  331. Y. Cohen, S.I. Sandler, The viscosity and thermal conductivity of simple dense gases. Ind. Eng. Chem. Fundam. 19(2), 186–188 (1980)

    Article  Google Scholar 

  332. P.S. Van der Gulik, N.J. Trappeniers, The viscosity of argon at high densities. Phys. A: Stat. Mech. Appl. 135(1), 1–20 (1986)

    Article  Google Scholar 

  333. P.S. Van der Gulik, N.J. Trappeniers, Application of Enskog theory on the viscosity of argon. Phys. B+C 139, 137–139 (1986)

    Google Scholar 

  334. V.K. Michalis, A.N. Kalarakis, E.D. Skouras, V.N. Burganos, Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid. Nanofluid. 9(4–5), 847–853 (2010)

    Article  Google Scholar 

  335. A. Beskok, G.E. Karniadakis, Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3(1), 43–77 (1999)

    Article  Google Scholar 

  336. E. Roohi, M. Darbandi, Extending the Navier-Stokes solutions to transition regime in two-dimensional micro-and nanochannel flows using information preservation scheme. Phys. Fluids 21(8), 082001 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Józsa .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Józsa, V., Kovács, R. (2020). Nature Knows Better. In: Solving Problems in Thermal Engineering. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-33475-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33475-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33474-1

  • Online ISBN: 978-3-030-33475-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics